Han, Jinyue and Wang, Jun and Gao, Wei and Tang, Man-Lai (2023): Estimation of the directions for unknown parameters in semiparametric models.
Preview |
PDF
MPRA_paper_116365.pdf Download (77kB) | Preview |
Abstract
Semiparametric models are useful in econometrics, social sciences and medicine application. In this paper, a new estimator based on least square methods is proposed to estimate the direction of unknown parameters in semi-parametric models. The proposed estimator is consistent and has asymptotic distribution under mild conditions without the knowledge of the form of link function. simulations show that the proposed estimator is significantly superior to maximum score estimator given by Manski (1975) for binary response variables. When the error term is long-tailed distributions or distribution with no moments, the proposed estimator perform well. Its application is illustrated with data of exportibg participation of manufactures in Guangdong
Item Type: | MPRA Paper |
---|---|
Original Title: | Estimation of the directions for unknown parameters in semiparametric models |
English Title: | Estimation of the directions for unknown parameters in semiparametric models |
Language: | English |
Keywords: | Binary model, direction, least squares estimator, maximum score, semi-parametric models, single index model. |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C25 - Discrete Regression and Qualitative Choice Models ; Discrete Regressors ; Proportions ; Probabilities C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation |
Item ID: | 116365 |
Depositing User: | Dr Wei Gao |
Date Deposited: | 16 Feb 2023 14:43 |
Last Modified: | 16 Feb 2023 14:43 |
References: | 1. Abrevaya, J., Huang, J. (2005). On the bootstrap of the maximum score estimator. Econometrica, 73(4), 1175-1204. 2. Antoniadis, A., Grégoire, G., McKeague, I. W. (2004). Bayesian estimation in single-index models. Statistica Sinica, 1147-1164. 3. Balabdaoui, F., Durot, C., Jankowski, H. (2019). Least squares estimation in the monotone single index model. Bernoulli , 25(4B), 3276-3310. 4 Baltagi, B. H., Egger, P. H., Kesina, M. (2022). Bayesian estimation of multivariate panel probits with higher-order network interdependence and an application to firms' global market participation in Guangdong. Journal of Applied Econometrics, 37(7), 1356-1378. 5. Cui, X., Hardle, W. K., Zhu, L. (2011). The EFM approach for single-index models. The Annals of Statistics, 39(3), 1658-1688. 6. Fan, Y., Han, F., Li, W., Zhou, X. H. (2020). On rank estimators in increasing dimensions. Journal of Econometrics, 214(2), 379-412. 7. Frahm, G. (2004). Generalized elliptical distributions: theory and applications (Doctoral dissertation, Universitat zu Koln). 8. Gao, W. Y., Xu, S. (2022). Two-Stage Maximum Score Estimator. arXiv preprint arXiv:2009.02854. 9. Han, A. K. (1987). Non-parametric analysis of a generalized regression model: the maximum rank correlation estimator. Journal of Econometrics, 35(2-3), 303-316. 10. Hardle, W., Hall, P., Ichimura, H. (1993). Optimal smoothing in single-index models. The annals of Statistics, 21(1), 157-178. 11. Hardle, W., Stoker, T. M. (1989). Investigating smooth multiple regression by the method of average derivatives. Journal of the American statistical Association, 84(408), 986-995. 12. Horowitz, J. L. (1992). A smoothed maximum score estimator for the binary response model. Econometrica, 505-531. 13. Hristache, M., Juditsky, A., Spokoiny, V. (2001). Direct estimation of the index coefficient in a single-index model. Annals of Statistics, 595-623. 14. Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. Journal of econometrics, 58(1-2), 71-120. 15. Khan, S., Lan, X., Tamer, E. (2021). Estimating High Dimensional Monotone Index Models by Iterative Convex Optimization1. arXiv preprint arXiv:2110.04388. 16. Kuchibhotla, A. K., Patra, R. K. (2020). Efficient estimation in single index models through smoothing splines. Bernoulli, 26(2), 1587-1618. 17. Kuchibhotla, A. K., Patra, R. K., Sen, B. (2021). Semiparametric Efficiency in Convexity Constrained Single-Index Model. Journal of the American Statistical Association, 1-15. 18. Li, Q. and Racine, J.S. (2007). Nonparametric Econometrics: Theory and Practice. Princeton, NJ: Princeton Univ. Press. MR2283034. 19. Liu, J., Zhang, R., Zhao, W., Lv, Y. (2013). A robust and efficient estimation method for single index models. Journal of Multivariate Analysis, 122, 226-238. 20. Manski, C. F. (1975). Maximum score estimation of the stochastic utility model of choice. Journal of econometrics, 3(3), 205-228. 21. Manski, C. F. (1985). Semiparametric analysis of discrete response: Asymptotic properties of the maximum score estimator. Journal of econometrics, 27(3), 313-333. 22. Manski, C. F. (1988). Identification of binary response models. Journal of the American statistical Association, 83(403), 729-738. 23. Naik, P., Tsai, C. L. (2000). Partial least squares estimator for single-index models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(4), 763-771. 24. Park, H., Petkova, E., Tarpey, T., Ogden, R. T. (2020). A single-index model with multiple-links. Journal of statistical planning and inference, 205 115-128. 25. Patra, R. K., Seijo, E., Sen, B. (2018). A consistent bootstrap procedure for the maximum score estimator. Journal of Econometrics, 205(2), 488-507. 26. Shen, G., Chen, K., Huang, J., Lin, Y. (2022). Linearized maximum rank correlation estimation. Biometrika. 27. Song, X., Ma, S., Huang, J., Zhou, X. H. (2007). A semiparametric approach for the nonparametric transformation survival model with multiple covariates. Biostatistics, 8(2), 197-211. 28. Wu, T. Z., Yu, K., Yu, Y. (2010). Single-index quantile regression. Journal of Multivariate Analysis, 101(7), 1607-1621. 29. Yang, J., Tian, G., Lu, F., Lu, X. (2020). Single-index modal regression via outer product gradients. Computational Statistics and Data Analysis, 144, 106867. 30. Yu, Y., Ruppert, D. (2002). Penalized spline estimation for partially linear single-index models. Journal of the American Statistical Association, 97(460), 1042-1054. 31. Zhou, J. and He, X. (2008). Dimension reduction based on constrained canonical correlation and variable filtering. Annals of Statistics, 36, 1649–1668. 32. Zhou, L., Lin, H., Chen, K., Liang, H. (2019). Efficient estimation and computation of parameters and nonparametric functions in generalized semi/non-parametric regression models. Journal of Econometrics, 213(2), 593-607. 33. Zou, Q. and Zhu, Z. (2014). M-estimators for single-index model using B-spline. Metrika, 77, 225–246. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/116365 |