Logo
Munich Personal RePEc Archive

Прогнозирование основных российских макроэкономических показателей с помощью TVP-модели с байесовским сжатием параметров

Polbin, Andrey and Shumilov, Andrei (2024): Прогнозирование основных российских макроэкономических показателей с помощью TVP-модели с байесовским сжатием параметров.

[thumbnail of MPRA_paper_120170.pdf]
Preview
PDF
MPRA_paper_120170.pdf

Download (870kB) | Preview

Abstract

The paper examines the quality of forecasts of Russian GDP and its components (household consumption, investment, exports and imports) using a model with Bayesian shrinkage of time-varying parameters (TVP) based on hierarchical normal-gamma prior. Such models account for the possible nonlinearity of relationships and, at the same time, can deal with the overfitting problem. We find that, compared to simpler benchmarks, the Bayesian TVP model with exogenous predictors gives better forecasts for GDP at horizons of 2-4 quarters, and for investment – at horizons of 1-3 quarters. When predicting other components of GDP, Bayesian TVP models do not demonstrate systematic superiority over other models.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.