Logo
Munich Personal RePEc Archive

Практические методы прогнозирования сохранения клиентской базы (перевод на русский язык)

Черкашин, Александр and Сахаджи, Владислав and Гулиев, Руслан and Большунова, Елена (2024): Практические методы прогнозирования сохранения клиентской базы (перевод на русский язык).

[thumbnail of MPRA_paper_122483.pdf] PDF
MPRA_paper_122483.pdf

Download (1MB)

Abstract

This study examines methods for analyzing and forecasting the retention of active subscribers in the telecommunications industry using various criteria for subscriber activity. The results demonstrate that the retention dynamics of an active subscriber base can be effectively modeled using a decreasing power function. This allows for medium-term forecasting based on initial subscriber activity data. However, it is important to note the potential limitations in the effectiveness of the proposed approach for long-term forecasting, associated with changes in subscriber churn dynamics over time. This is a Russian translation of «Practical Methods for Predicting Customer Retention» paper published on MPRA (https://mpra.ub.uni-muenchen.de/id/eprint/122400) 15.10.2024.

Commentary/Response Threads

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.