Korobova, Elena and Fantazzini, Dean (2024): Stablecoins and credit risk: when do they stop being stable? Forthcoming in: Applied Econometrics (2025): pp. 1-30.
PDF
MPRA_paper_122951.pdf Download (457kB) |
Abstract
Stablecoins are a pivotal and debated topic within decentralized finance (DeFi), attracting significant interest from researchers, investors, and crypto-enthusiasts. These digital assets are designed to offer stability in the volatile cryptocurrency market, addressing key challenges in traditional financial systems and DeFi, such as price volatility, transparency, and transaction efficiency. This paper contributes to the existing literature by estimating the credit risk associated with stablecoins, marking the first study to focus exclusively on this market. Our findings reveal that a substantial portion of stablecoins have failed, aligning with existing literature. Using Feder et al.'s (2018) methodology, we observed that 21% of stablecoins were "abandoned" at least once, with only 36% being later "resurrected," and just 11% maintaining their "resurrected" status. These results support the hypothesis that stablecoins rarely recover once they break their peg, often due to technical issues or loss of user trust. We also found that the time between a statistically significant break in the stablecoin's peg and its subsequent collapse or stabilization averages approximately 10 days. We estimated probabilities of default (PDs) for stablecoins based on market capitalization using various forecasting models. A robustness check further indicated that stablecoins on the Ethereum blockchain are less prone to default, likely due to Ethereum's robust ecosystem and the established presence of older stablecoins. Despite the study's limitations, including a limited dataset of 121 stablecoins and missing market capitalization data, the findings offer practical applications for investors and traders. The techniques and models applied in this research provide tools for evaluating credit risks in the stable-coins market, aiding in portfolio management and investment strategies.
Item Type: | MPRA Paper |
---|---|
Original Title: | Stablecoins and credit risk: when do they stop being stable? |
Language: | English |
Keywords: | stablecoins; crypto-assets; cryptocurrencies; credit risk; default probability; probability of death; ZPP; Cox Proportional Hazards Model. |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C35 - Discrete Regression and Qualitative Choice Models ; Discrete Regressors ; Proportions C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C38 - Classification Methods ; Cluster Analysis ; Principal Components ; Factor Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods G - Financial Economics > G1 - General Financial Markets > G12 - Asset Pricing ; Trading Volume ; Bond Interest Rates G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation G - Financial Economics > G3 - Corporate Finance and Governance > G32 - Financing Policy ; Financial Risk and Risk Management ; Capital and Ownership Structure ; Value of Firms ; Goodwill G - Financial Economics > G3 - Corporate Finance and Governance > G33 - Bankruptcy ; Liquidation |
Item ID: | 122951 |
Depositing User: | Prof. Dean Fantazzini |
Date Deposited: | 15 Dec 2024 10:27 |
Last Modified: | 15 Dec 2024 10:27 |
References: | Adrichem B. (2019). Howey Should be Distributing Cryptocurrencies: Applying the Howey Test to Min-ing, Airdropping, Forking, and Initial Coin Offerings. Science and Technology Law Review, 20 (2), 388–422. DOI: 10.7916/stlr.v20i2.4775. Arner D., Auer R., Frost J. (2020). Stablecoins: risks, potential and regulation. BIS Working Papers. Bank for International Settlement. Baughman G., Carapella F., Gerszten J., Mills D. (2022). The stable in stablecoins. FEDS Notes. Wash-ington: Board of Governors of the Federal Reserve System. https://www.federalreserve.gov/econres/notes/feds-notes/the-stable-in-stablecoins-20221216.html. Bellasio J., Silfversten E., Leverett E., Knack A., Quimbre F., Blondes E. L., Favaro M., Paoli G. P. (2020). How could technological developments influence the future of cybercrime? RAND Corporation. Berentsen A., Schär F. (2019). Stablecoins: The quest for a low-volatility cryptocurrency. The economics of Fintech and digital currencies, 65–75. BIS (2021). Application of the principles for financial market infrastructures to stablecoin arrangements consultative report. Bank of International Settlements, Board of the International Organization of Securities Commissions. Retrieved from https://www.bis.org/cpmi/publ/d198.pdf. Bolger M., Hon H. (2022). When the peg breaks. Depegging events in fiat and crypto.https://content-hub-static.crypto.com/wp-content/uploads/2022/05/20220531_CDC_1_When_the_Peg_Breaks.pdf . Brent T., Colson D., Elder M., Fisher H., Freeman N., Ostman J., Van Nostrand E. (2019). Reserve Stabilization Protocol. https://reserve.org/assets/files/whitepaper.pdf. Breslow N. E. (1975). Analysis of survival data under the proportional hazards model. International Sta-tistical Review/Revue Internationale de Statistique, 45–57. DOI: 10.2307/1402659. Brier G. W. (1950). Verification of forecasts expressed in terms of probability. Monthly weather review, 78(1), 1–3. DOI: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2. Briola A., Vidal-Tomás D., Wang Y., Aste T. (2023). Anatomy of a stablecoin’s failure: The Terra-Luna case. Finance Research Letters, 51, 103358. DOI: 10.1016/j.frl.2022.103358. Bullmann D., Klemm J., Pinna A. (2019). In search for stability in crypto-assets: are stablecoins the so-lution? Occasional Paper Series, 230. European Central Bank. Cermak L., Rogers M., Hoffmann L. (2021). Stablecoins: Bridging the network gap between traditional money and digital value. The Block Resesarch. https://www.tbstat.com/wp/uploads/2021/03/20210310_Stablecoin_Report_v1.0.pdf. Chen C., Chu J., Fornaris C., Krishna D., Poston P., Prior P., Rodriguez M., Stabile, D. (2022). Digital As-sets & Blockchain Technology Group. The Future of Digital Assets Regulation in the United States. Treasury and Doj Signal Tough Regulation and Strict Enforcement. Winston & Strawn LLP white paper. https://www.winston.com/images/content/2/7/v2/275921/TNT-The-Future-of-DigitalAssets-Regulation-in-the-United-States.pdf. Cox D. R. (1972). Regression models and life‐tables. Journal of the Royal Statistical Society: Series B (Methodological), 34 (2), 187–202. DOI: 10.1111/j.2517-6161.1972.tb00899.x. Fantazzini D. (2022). Crypto-Coins and Credit Risk: Modelling and Forecasting Their Probability of Death. Journal of Risk and Financial Management, 15 (7). DOI: 10.3390/jrfm15070304. Fantazzini D. (2023). Assessing the credit risk of crypto-assets using daily range volatility models. Infor-mation, 14 (5), 254. DOI: 10.3390/info14050254. Fantazzini D., Calabrese, R. (2021). Crypto Exchanges and Credit Risk: Modeling and Forecasting the Probability of Closure. Journal of Risk and Financial Management, 14(11), 516. DOI: 10.3390/jrfm14110516. Fantazzini D., Zimin S. (2020). A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies. Journal of Industrial and Business Economics, 47(1), 19–69. DOI: 10.1007/s40812-019-00136-8. Fantazzini D., Giuli M. E., Maggi M. (2008). A new approach for frm value and default probability esti-mation beyond merton models. Computational Economics, 31(2), 161– 80. DOI: 10.1007/s10614-007-9112-4. Feder A., Gandal N., Hamrick J. T., Moore T., Vasek, M. (2018). The Rise and Fall of Cryptocurrencies. In Proceedings of the 17th Workshop on the Economics of Information Security (WEIS), Inns-bruck, Austria, 18–19 June 2018. Gandal N., Hamrick J. T., Moore T., Vasek M. (2021). The rise and fall of cryptocurrency coins and to-kens. Decisions in Economics and Finance, 44 (2), 981–1014. DOI: 10.1007/s10203-021-00329-8. Gatabazi P., Kabera G., Mba J. C. Pindza, E., Melesse, S. F. (2022). Cryptocurrencies and Tokens Life-time Analysis from 2009 to 2021. Economies, 10 (3), 60. MDPI AG. DOI: 10.3390/economies10030060. Grambsch P. M., Therneau T. M. (1994). Proportional hazards tests and diagnostics based on weighted residuals. Biometrika, 81 (3), 515–526. DOI: 10.1093/biomet/81.3.515. Grobys K., Sapkota N. (2020). Predicting cryptocurrency defaults. Applied Economics, 52 (46), 5060–5076. DOI: 10.1080/00036846.2020.1752903. Guidi B. (2021). An overview of blockchain online social media from the technical point of view. Ap-plied Sciences, 11 (21), 9880. DOI: 10.3390/app11219880. Hansen P. R., Lunde A., Nason J. M. (2011). The model confidence set. Econometrica, 79 (2), 453¬497. DOI: 10.3982/ECTA5771. Harrell F., Califf R. M., Pryor D., Lee K., Rosati R. (1982). Evaluating the yield of medical tests. Jama, 247 (18), 2543–2546. DOI: 10.1001/jama.1982.03320430047030. Hileman G. (2019). State of stablecoins (2019). SSRN 3533143. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3533143. Inozemtsev M. (2021). Digital Assets in the United States: Legal Aspects. In: Ashmarina S., Mantulenko V., Vochozka M. (eds) Engineering Economics: Decisions and Solutions from Eurasian Perspec-tive. Lecture Notes in Networks and Systems, vol 139. Springer, Cham. DOI: 10.1007/978-3-030-53277-2_61. James G., Witten D., Hastie T., Tibshirani R. (2023). An introduction to statistical learning (Vol. 112, p. 18). New York: Springer. Kalbfleisch J. D., Schaubel D. E. (2023). Fifty years of the Cox model. Annual Review of Statistics and Its Application, 10 (1), 1–23. DOI: 10.1146/annurev-statistics-033021-014043. Kjäer M., Di Angelo M., Salzer G. (2021). Empirical Evaluation of MakerDAO’s Resilience. In 2021 3rd Conference on Blockchain Research & Applications for Innovative Networks and Services (BRAINS) (pp. 193-200). IEEE. DOI: 10.1109/BRAINS52497.2021.9569811. Klages-Mundt A., Harz D., Gudgeon L., Liu J. Y., Minca A. (2020). Stablecoins 2.0: Economic Founda-tions and Risk-based Models. In, Proceedings of the 2nd ACM Conference on Advances in Finan-cial Technologies, 59–79. DOI: 10.1145/3419614.3423261. Kuan C. M., Hornik K. (1995). The generalized fluctuation test: A unifying view. Econometric Reviews, 14 (2), 135–161. DOI: 10.1080/07474939508800311. Lyons R. K., Viswanath-Natraj G. (2023). What keeps stablecoins stable? Journal of International Money and Finance, 131, 102777. DOI: 10.1016/j.jimonfin.2022.102777. Mita M., Ito K., Ohsawa S., Tanaka, H. (2019). What is Stablecoin?: A Survey on Price Stabilization Mechanisms for Decentralized Payment Systems, In, 2019 8th International Congress on Ad-vanced Applied Informatics (IIAI-AAI), Toyama, Japan, 2019, 60-66. DOI: 10.1109/IIAI-AAI.2019.00023. Moin A., Sekniqi K., Sirer G. (2020). SoK: A Classification Framework for Stablecoin Designs. In: Bon-neau, J., Heninger, N. (eds) Financial Cryptography and Data Security. FC 2020. Lecture Notes in Computer Science, vol. 12059. Springer, Cham. DOI: 10.1007/978-3-030-51280-4_1. Parma B., Ismail A., Melo F., Sugimoto N. (2022). Regulating the crypto ecosystem: the case of stable-coins and arrangements. International Monetary Fund. IMF Fintech Note 2022/008, Washington, DC. Piech S. (2022). Algorithmic Stablecoins. Binance Research, https://research.binance.com/static/pdf/Algorithmic_Stablecoin_Stefan_Piech.pdf . Quarles R (2021). BIS. Parachute pants and central bank money. https://www.bis.org/review/r210705c.htm. Sammut C., Webb G. (2011). Encyclopedia of machine learning. Springer Science & Business Media. Schmitz T., Hoffmann I. (2020). Re-evaluating cryptocurrencies' contribution to portfolio diversification--A portfolio analysis with special focus on German investors. arXiv preprint arXiv:2006.06237. Uno. H., Cai T., Pencina M. J., D'Agostino R. B., Wei L. J. (2011). On the C‐statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Statistics in medicine, 30 (10), 1105–1117. DOI: 10.1002/sim.4154. US Treasury (2021). Report on Stablecoins. President’s Working Group on Financial Markets, the Federal Deposit Insurance Corporation, and the Office of the Comptroller of the Currency. https://home.treasury.gov/system/files/136/StableCoinReport_Nov1_508.pdf. Wang G. J., Ma X. Y., Wu H. Y. (2020). Are stablecoins truly diversifiers, hedges, or safe havens against traditional cryptocurrencies as their name suggests? Research in International Business and Fi-nance, 54, 101225. DOI: 10.1016/j.ribaf.2020.101225. White K., Buonocore C., Goel A., Waliczek S. (2022). The macroeconomic impact of cryptocurrency and stablecoins. World Economic Forum, White Paper, July. https://www.weforum.org/publications/the-macroeconomic-impact-of-cryptocurrency-and-stablecoins/. Zeileis A., Leisch F., Hornik K., Kleiber C. (2002). strucchange: An R package for testing for structural change in linear regression models. Journal of statistical software, 7, 1–38. DOI: 10.18637/jss.v007.i02. Zeileis A., Leisch F., Kleiber C., Hornik K. (2005). Monitoring structural change in dynamic econometric models. Journal of Applied Econometrics, 20 (1), 99–121. DOI: 10.1002/jae.776. Zhang A., Raveenthiran A., Mukai J., Naeem R., Dhuna A., Parveen Z., Kim H. (2018). The Regulation Paradox of Initial Coin Offerings: A Case Study Approach. Frontiers in Blockchain 2 (2). DOI: 10.3389/fbloc.2019.00002. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/122951 |