Mohapatra, Souryabrata and Sahoo, Dukhabandhu and Sahoo, Auro Kumar and Sharp, Basil and Wen, Le (2023): Heterogeneous climate effect on crop yield and associated risks to water security in India. Published in: International Journal of Water Resources Development , Vol. 40, No. 3 (2024): pp. 345-378.
PDF
MPRA_paper_123349.pdf Download (848kB) |
Abstract
This study uses the Just–Pope approach to investigate the effects of seasonal weather variables and extremes on the mean yield and yield variability of rice, bajra, chickpea, groundnut and sugarcane in India during 1990–2018. Results reveal that changes in rainfall and evapotranspiration across seasons largely affect mean yields for most crops, including bajra, chickpea and groundnut. However, high summer rainfall and low monsoon evapotranspiration extremes reduce groundnut and chickpea yield variability, respectively. Considering the importance of water availability to crop yields, this study suggests improving irrigation and water reallocation and management to reduce the severity of seasonal climate effects.
Item Type: | MPRA Paper |
---|---|
Original Title: | Heterogeneous climate effect on crop yield and associated risks to water security in India |
Language: | English |
Keywords: | Stochastic frontier analysis; climate change; food security; water management; India |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q12 - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q2 - Renewable Resources and Conservation > Q25 - Water Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q5 - Environmental Economics > Q54 - Climate ; Natural Disasters and Their Management ; Global Warming |
Item ID: | 123349 |
Depositing User: | Souryabrata Mohapatra |
Date Deposited: | 21 Jan 2025 14:45 |
Last Modified: | 21 Jan 2025 14:45 |
References: | Abbass, K., Qasim, M. Z., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29(28), 42539–42559. https://doi.org/10.1007/s11356-022-19718-6 Ambika, A. K., & Mishra, V. (2022). Improved Water Savings and Reduction in Moist Heat Stress Caused by Efficient Irrigation. Earth’s Future, 10(4), e2021EF002642. https://doi.org/10.1029/2021EF002642 Amjath-Babu, T. S., Krupnik, T. J., Aravindakshan, S., Arshad, M., & Kaechele, H. (2016). Climate change and indicators of probable shifts in the consumption portfolios of dryland farmers in Sub-Saharan Africa: Implications for policy. Ecological Indicators, 67, 830–838. https://doi.org/10.1016/j.ecolind.2016.03.030 Anderson, J. R., & Hazell, P. B. R. (Eds.). (1989). Variability in grain yields: Implications for agricultural research and policy in developing countries. The Johns Hopkins University Press. Arshad, M., Amjath-Babu, T. S., Krupnik, T. J., Aravindakshan, S., Abbas, A., Kächele, H., & Müller, K. (2017). Climate variability and yield risk in South Asia’s rice–wheat systems: Emerging evidence from Pakistan. Paddy and Water Environment, 15(2), 249–261. https://doi.org/10.1007/s10333-016-0544-0 Arumugam, S., K.R., A., Kulshreshtha., S. N., Vellangany, I., & Govindasamy, R. (2015). Yield variability in rainfed crops as influenced by climate variables: A micro level investigation into agro-climatic zones of Tamil Nadu, India. International Journal of Climate Change Strategies and Management, 7(4), 442–459. https://doi.org/10.1108/IJCCSM-08-2013-0096 Aslam, F., Salman, A., Jan, I., & Aneel, S. S. (2021). Policy Analytics-Insights from Pakistan and India Water Policies. Sarhad Journal of Agriculture, 37(2). https://doi.org/10.17582/journal.sja/2021/37.2.538.547 Baccar, M., Bergez, J.-E., Couture, S., Sekhar, M., Ruiz, L., & Leenhardt, D. (2021). Building Climate Change Adaptation Scenarios with Stakeholders for Water Management: A Hybrid Approach Adapted to the South Indian Water Crisis. Sustainability, 13(15), Article 15. https://doi.org/10.3390/su13158459 Barnwal, P., & Kotani, K. (2010). Impact of variation in climatic factors on crop yield: A case of rice crop in Andhra Pradesh, India. In Working Papers (No. 2010–17; Economics & Management Series). IUJ Research Institute. https://ideas.repec.org/p/iuj/wpaper/ems_2010_17.html Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science (New York, N.Y.), 323(5911), 240–244. https://doi.org/10.1126/science.1164363 Boubacar, I. (2012). The Effects of Drought on Crop Yields and Yield Variability: An Economic Assessment. International Journal of Economics and Finance, 4(12). https://doi.org/10.5539/ijef.v4n12p51 Cabas, J., Weersink, A., & Olale, E. (2010). Crop yield response to economic, site and climatic variables. Climatic Change, 101(3), 599–616. https://doi.org/10.1007/s10584-009-9754-4 Cai, X., Zhang, X., Noël, P. H., & Shafiee-Jood, M. (2015). Impacts of climate change on agricultural water management: A review. WIREs Water, 2(5), 439–455. https://doi.org/10.1002/wat2.1089 Carew, R., Meng, T., Florkowski, W. J., Smith, R., & Blair, D. (2018). Climate change impacts on hard red spring wheat yield and production risk: Evidence from Manitoba, Canada. Canadian Journal of Plant Science, 98(3), 782–795. https://doi.org/10.1139/cjps-2017-0135 Chandrakanth, M. G. (2021). Farm subsidies account for 21% farm income per hectare with continuing patronage of governments. The Times of India. https://timesofindia.indiatimes.com/blogs/economic-policy/farm-subsidies-account-for-21-farm-income-per-hectare-with-continuing-patronage-of-governments/ Chen, C.-C., McCarl, B. A., & Schimmelpfennig, D. E. (2004). Yield Variability as Influenced by Climate: A Statistical Investigation. Climatic Change, 66(1), 239–261. https://doi.org/10.1023/B:CLIM.0000043159.33816.e5 Derner, J., Joyce, L., & Guerrero, R. (2015). USDA Northern Plains Regional Climate Hub Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies (p. 57). United States Department of Agriculture. https://www.climatehubs.usda.gov/sites/default/files/NorthernPlains_Vulnerability_Assessment_2015.pdf Descheemaeker, K., Bunting, S. W., Bindraban, P. S., Muthuri, C., Molden, D., Beveridge, M., Brakel, M. van, Herrero, M., Clément, F., Boelee, E., & Jarvis, D. I. (2013). Increasing water productivity in agriculture (p. 192 p.). CABI Publishing. https://hal.inrae.fr/hal-02807616 Deschênes, O., & Greenstone, M. (2007). The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather. American Economic Review, 97(1), 354–385. https://doi.org/10.1257/aer.97.1.354 Dhawan, V. (2017). Water and Agriculture in India: Background Paper for the South Asia Expert Panel During the Global Forum for Food and Agriculture (GFFA) 2017. OAV - German Asia-Pacific Business Association. https://www.oav.de/fileadmin/user_upload/5_Publikationen/5_Studien/170118_Study_Water_Agriculture_India.pdf D’Souza, R., Ghosh, N., & Suri, S. (2022). Estimating the Productivity of India’s Agricultural Waters: Towards Water and Nutritional Security Through Crop Choices (ORF Occasional Paper No. 352). Observer Research Foundation. https://www.orfonline.org/research/estimating-the-productivity-of-indias-agricultural-waters/ Food and Agriculture Organization. (2022). FAOSTAT statistical database. Food and Agriculture Organization. https://www.fao.org/faostat/en/#data Ginbo, T. (2022). Heterogeneous impacts of climate change on crop yields across altitudes in Ethiopia. Climatic Change, 170(1), 12. https://doi.org/10.1007/s10584-022-03306-1 Gourdji, S. M., Sibley, A. M., & Lobell, D. B. (2013). Global crop exposure to critical high temperatures in the reproductive period: Historical trends and future projections. Environmental Research Letters, 8(2). https://doi.org/10.1088/1748-9326/8/2/024041 Govindarajan, S., Ambujam, N. K., & Karunakaran, K. (2008). Estimation of paddy water productivity (WP) using hydrological model: An experimental study. Paddy and Water Environment, 6(3), 327–339. https://doi.org/10.1007/s10333-008-0131-0 Grafton, R. Q., Pittock, J., Davis, R., Williams, J., Fu, G., Warburton, M., Udall, B., McKenzie, R., Yu, X., Che, N., Connell, D., Jiang, Q., Kompas, T., Lynch, A., Norris, R., Possingham, H., & Quiggin, J. (2013). Global insights into water resources, climate change and governance. Nature Climate Change, 3(4), Article 4. https://doi.org/10.1038/nclimate1746 Gujarati, D. N. (2004). Basic Econometrics. McGraw-Hill Companies. Guntukula, R., & Goyari, P. (2020). The impact of climate change on maize yields and its variability in Telangana, India: A panel approach study. Journal of Public Affairs, 20(3), e2088. https://doi.org/10.1002/pa.2088 Guntukula, R., & Goyari, P. (2021). How does the yield variability in rainfed crops respond to climate variables? Evidence from pulses yields in Telangana, India. Journal of Agribusiness in Developing and Emerging Economies, 12(2), 262–280. https://doi.org/10.1108/JADEE-12-2020-0307 Gupta, R., Tyagi, N. K., & Abrol, I. (2020). Rainwater Management and Indian Agriculture: A Call for a Shift in Focus from Blue to Green Water. Agricultural Research, 9(4), 429–443. https://doi.org/10.1007/s40003-020-00467-2 Guttormsen, A. G., & Roll, K. H. (2014). Production Risk in a Subsistence Agriculture. The Journal of Agricultural Education and Extension, 20(1), 133–145. https://doi.org/10.1080/1389224X.2013.775953 Haile, M. G., Wossen, T., Tesfaye, K., & von Braun, J. (2017). Impact of Climate Change, Weather Extremes, and Price Risk on Global Food Supply. Economics of Disasters and Climate Change, 1(1), 55–75. https://doi.org/10.1007/s41885-017-0005-2 Hasanthika, W. K. A. M. A., Edirisinghe, J. C., & Rajapakshe, R. D. D. P. (2014). Climate Variability, Risk and Paddy Production. Journal of Environmental Professionals Sri Lanka, 2(2), Article 2. https://doi.org/10.4038/jepsl.v2i2.6330 He, W., Yang, J. Y., Qian, B., Drury, C. F., Hoogenboom, G., He, P., Lapen, D., & Zhou, W. (2018). Climate change impacts on crop yield, soil water balance and nitrate leaching in the semiarid and humid regions of Canada. PLOS ONE, 13(11), e0207370. https://doi.org/10.1371/journal.pone.0207370 Holst, R., Yu, X., & Grün, C. (2013). Climate Change, Risk and Grain Yields in China. Journal of Integrative Agriculture, 12(7), 1279–1291. https://doi.org/10.1016/S2095-3119(13)60435-9 Holzkämper, A. (2017). Adapting Agricultural Production Systems to Climate Change—What’s the Use of Models? Agriculture, 7(10), Article 10. https://doi.org/10.3390/agriculture7100086 Howden, S. M., Soussana, J.-F., Tubiello, F. N., Chhetri, N., Dunlop, M., & Meinke, H. (2007). Adapting agriculture to climate change. Proceedings of the National Academy of Sciences, 104(50), 19691–19696. https://doi.org/10.1073/pnas.0701890104 Iizumi, T., & Ramankutty, N. (2015). How do weather and climate influence cropping area and intensity? Global Food Security, 4, 46–50. https://doi.org/10.1016/j.gfs.2014.11.003 Intergovernmental Panel on Climate Change. (2007). Climate Change 2007 - Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC. Cambridge University Press. Intergovernmental Panel on Climate Change. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (p. 151). IPCC. Intergovernmental Panel on Climate Change. (2022). Climate change 2022: Impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the Intergovernmental Panel on Climate Change (H.-O. Pörtner, D. C. Roberts, M. M. B. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama, Eds.). Cambridge University Press. https://doi.org/10.1017/9781009325844 Isik, M., & Devadoss, S. (2006). An analysis of the impact of climate change on crop yields and yield variability. Applied Economics, 38(7), 835–844. https://doi.org/10.1080/00036840500193682 Jain, M., Fishman, R., Mondal, P., Galford, G. L., Bhattarai, N., Naeem, S., Lall, U., Balwinder-Singh, & DeFries, R. S. (2021). Groundwater depletion will reduce cropping intensity in India. Science Advances, 7(9), eabd2849. https://doi.org/10.1126/sciadv.abd2849 Jain, M., Naeem, S., Orlove, B., Modi, V., & DeFries, R. S. (2015). Understanding the causes and consequences of differential decision-making in adaptation research: Adapting to a delayed monsoon onset in Gujarat, India. Global Environmental Change, 31, 98–109. https://doi.org/10.1016/j.gloenvcha.2014.12.008 Janowiak, M. K., Dostie, D. N., Wilson, M. A., Kucera, M. J., Skinner, R. H., Hatfield, J. L., Hollinger, D., & Swanston, C. W. (2016). Adaptation Resources for Agriculture: Responding to Climate Variability and Change in the Midwest and Northeast (p. 72). United States Department of Agriculture. Jat, H. S., Sharma, P. C., Datta, A., Choudhary, M., Kakraliya, S. K., Yadvinder-Singh, Sidhu, H. S., Gerard, B., & Jat, M. L. (2019). Re-designing irrigated intensive cereal systems through bundling precision agronomic innovations for transitioning towards agricultural sustainability in North-West India. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-54086-1 Just, R. E., & Pope, R. D. (1978). Stochastic specification of production functions and economic implications. Journal of Econometrics, 7(1), 67–86. https://doi.org/10.1016/0304-4076(78)90006-4 Kabir, Md. H. (2015). Impacts of Climate Change on Rice Yield and Variability; an Analysis of Disaggregate Level in the Southwestern Part of Bangladesh Especially Jessore and Sathkhira Districts. Journal of Geography & Natural Disasters, 5(3). https://doi.org/10.4172/2167-0587.1000148 Kakraliya, S. K., Jat, H. S., Singh, I., Sapkota, T. B., Singh, L. K., Sutaliya, J. M., Sharma, P. C., Jat, R. D., Choudhary, M., Lopez-Ridaura, S., & Jat, M. L. (2018). Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains. Agricultural Water Management, 202, 122–133. https://doi.org/10.1016/j.agwat.2018.02.020 Kalkuhl, M., Haile, M., Kornher, L., & Kozicka, M. (Eds.). (2015). Cost-benefit framework for policy action to navigate food price spikes. https://doi.org/10.22004/ag.econ.285174 Kalkuhl, M., & Wenz, L. (2020). The impact of climate conditions on economic production. Evidence from a global panel of regions. Journal of Environmental Economics and Management, 103, 102360. https://doi.org/10.1016/j.jeem.2020.102360 Kang, Y., Khan, S., & Ma, X. (2009). Climate change impacts on crop yield, crop water productivity and food security – A review. Progress in Natural Science, 19(12), 1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001 Kim, M.-K., & Pang, A. (Eds.). (2009). Climate Change Impact on Rice Yield and Production Risk. Journal of Rural Development, 32(2), 17–29. https://doi.org/10.22004/ag.econ.90682 Knox, J., Hess, T., Daccache, A., & Wheeler, T. (2012). Climate change impacts on crop productivity in Africa and South Asia. Environmental Research Letters, 7(3). https://doi.org/10.1088/1748-9326/7/3/034032 Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., & Chakraborty, S. (Eds.). (2020). Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MoES), Government of India. Springer Singapore. https://doi.org/10.1007/978-981-15-4327-2 Kumar, A., Sharma, P., & Ambrammal, S. K. (2015). Climatic effects on sugarcane productivity in India: A stochastic production function application. International Journal of Economics and Business Research, 10(2), 179–203. https://doi.org/10.1504/IJEBR.2015.070984 Kumar, M. D., Sahasranaman, M., Verma, M. S., Kumar, S., & Narayanamoorthy, A. (2022). Getting the irrigation statistics right. International Journal of Water Resources Development, 38(3), 536–543. https://doi.org/10.1080/07900627.2021.1921711 Kuriachen, P., Suresh, A., Aditya, K. S., Venkatesh, P., Sen, B., & Yeligar, S. S. (2022). Irrigation development and equity implications: The case of India. International Journal of Water Resources Development, 38(3), Article 3. https://doi.org/10.1080/07900627.2021.1912715 Madhukar, A., Kumar, V., & Dashora, K. (2022). Spatial analysis of temperature trends during Rabi and Kharif seasons in India. Letters in Spatial and Resource Sciences. https://doi.org/10.1007/s12076-022-00304-w Mahmood, N., Arshad, M., Kächele, H., Ma, H., Ullah, A., & Müller, K. (2019). Wheat yield response to input and socioeconomic factors under changing climate: Evidence from rainfed environments of Pakistan. Science of The Total Environment, 688, 1275–1285. https://doi.org/10.1016/j.scitotenv.2019.06.266 McCarl, B. A., Villavicencio, X., & Wu, X. (2008). Climate Change and Future Analysis: Is Stationarity Dying? American Journal of Agricultural Economics, 90(5), 1241–1247. https://www.jstor.org/stable/20492379 Mearns, L. O., Rosenzweig, C., & Galford, R. (1997). Mean and variance change in climate scenarios: Methods, agricultural applications, and measures of uncertainty. Climatic Change, 35(4), 367–396. https://doi.org/10.1023/A:1005358130291 Melkonyan, A. (2015). Climate change impact on water resources and crop production in Armenia. Agricultural Water Management, 161, 86–101. https://doi.org/10.1016/j.agwat.2015.07.004 Mendelsohn, R., Nordhaus, W. D., & Shaw, D. (1994). The Impact of Global Warming on Agriculture: A Ricardian Analysis. The American Economic Review, 84(4), 753–771. https://www.jstor.org/stable/2118029 Mishra, V. (2019). Looking back into history to understand droughts. India water portal. https://www.indiawaterportal.org/articles/looking-back-history-understand-droughts#:~:text=The%20study%20finds%20that%3A,%2C%201918%2C%201965%20and%202000. Mishra, V., Asoka, A., Vatta, K., & Lall, U. (2018). Groundwater Depletion and Associated CO2 Emissions in India. Earth’s Future, 6(12), 1672–1681. https://doi.org/10.1029/2018EF000939 Mohapatra, S., Sharp, B., & Sahoo, D. (2022). How changes in climate affect crop yields in eastern india. Climate Change Economics, 13(02), 2250001. https://doi.org/10.1142/S2010007822500014 Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences, 104(50), 19680–19685. https://doi.org/10.1073/pnas.0701855104 Organisation for Economic Co-operation and Development. (2014). OECD Studies on Water Climate Change, Water and Agriculture Towards Resilient Systems: Towards Resilient Systems. OECD Publishing. Padakandla, S. R. (2016). Climate sensitivity of crop yields in the former state of Andhra Pradesh, India. Ecological Indicators, 70, 431–438. https://doi.org/10.1016/j.ecolind.2016.06.008 Padhee, A. K. (2020). Repurposing Public Policies for Sustainable Water Management in Indian Agriculture. ICRISAT Agri-buzz. https://www.icrisat.org/repurposing-public-policies-for-sustainable-water-management-in-indian-agriculture/ Palanisami, K., Kakumanu, K. R., Nagothu, U. S., & Ranganathan, C. R. (2019). Methodologies for Quantifying Climate Change Impacts on Rice Production. In K. Palanisami, K. R. Kakumanu, U. S. Nagothu, & C. R. Ranganathan (Eds.), Climate Change and Future Rice Production in India: A Cross Country Study of Major Rice Growing States of India (pp. 57–86). Springer. https://doi.org/10.1007/978-981-13-8363-2_4 Palanisami, K., Ranganathan, C. R., Kakumanu, K. R., & Nagothu, U. S. (2011). A Hybrid Model to Quantify the Impact of Climate Change on Agriculture in Godavari Basin, India. Energy and Environment Research, 1(1). https://doi.org/10.5539/eer.v1n1p32 Picazo-Tadeo, A. J., & Wall, A. (2011). Production risk, risk aversion and the determination of risk attitudes among Spanish rice producers. Agricultural Economics, 42(4), 451–464. https://doi.org/10.1111/j.1574-0862.2011.00537.x Poudel, M., Chen, S.-E., & Huang, W.-C. (2014). Climate Influence on Rice, Maize and Wheat Yields and Yield Variability in Nepal. Journal of Agricultural Science and Technology B, 4, 38–48. Poudel, S., & Kotani, K. (2013). Climatic impacts on crop yield and its variability in Nepal: Do they vary across seasons and altitudes? Climatic Change, 116(2), 327–355. https://doi.org/10.1007/s10584-012-0491-8 Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6(1). https://doi.org/10.1038/ncomms6989 Risal, A., Urfels, A., Srinivasan, R., Bayissa, Y., Shrestha, N., Paudel, G. P., & Krupnik, T. J. (2022). Impact of Climate Change on Water Resources and Crop Production in Western Nepal: Implications and Adaptation Strategies. Hydrology, 9(8), Article 8. https://doi.org/10.3390/hydrology9080132 Saei, M., Mohammadi, H., Ziaee, S., & Barkhordari, S. (2019). The Impact of Climate Change on Grain Yield and Yield Variability in Iran. Iranian Economic Review, 23(2), 509–531. https://doi.org/10.22059/ier.2019.70308 Sarker, M. A. R., Alam, K., & Gow, J. (2017). Performance of rain-fed Aman rice yield in Bangladesh in the presence of climate change. Renewable Agriculture and Food Systems, 34(4), 304–312. https://doi.org/10.1017/S1742170517000473 Sarker, Md. A. R., Alam, K., & Gow, J. (2014). Assessing the effects of climate change on rice yields: An econometric investigation using Bangladeshi panel data. Economic Analysis and Policy, 44(4), 405–416. https://doi.org/10.1016/j.eap.2014.11.004 Shah, H., Hellegers, P., & Siderius, C. (2021). Climate risk to agriculture: A synthesis to define different types of critical moments. Climate Risk Management, 34, 100378. https://doi.org/10.1016/j.crm.2021.100378 Shanabhoga, M. B., Bommaiah, K., Suresha, S. V., & Dechamma, S. (2020). Adaptation strategies by paddy-growing farmers to mitigate the climate crisis in Hyderabad-Karnataka region of Karnataka state, India. International Journal of Climate Change Strategies and Management, 12(5), 541–556. https://doi.org/10.1108/IJCCSM-01-2020-0010 Sharma, B. R., Gulati, A., Mohan, G., Manchanda, S., Ray, I., & Amarasinghe, U. (2018). Water Productivity Mapping of Major Indian Crops. Indian Council for Research on International Economic Relations. https://think-asia.org/handle/11540/8480 Shea, E. C. (2014). Adaptive management: The cornerstone of climate-smart agriculture. Journal of Soil and Water Conservation, 69(6), 198A-199A. https://doi.org/10.2489/jswc.69.6.198A Shukla, G. N., Ranjan, V., Sharma, P., Aslam, Md. N., Ranjan, V., & Shirsat, T. (2021). Creating an ecosystem for increasing water-use efficiency in agriculture. PwC. https://www.pwc.in/assets/pdfs/grid/agriculture/creating-an-ecosystem-for-increasing-water-use-efficiency-in-agriculture.pdf Sikka, A. K., Alam, M. F., & Mandave, V. (2022). Agricultural water management practices to improve the climate resilience of irrigated agriculture in India. Irrigation and Drainage, 1–20. https://doi.org/10.1002/ird.2696 Singh, A. K., Sharma, P., & Singh, D. K. (2016). Measuring the Influence of Weather Variables on Productivity of Food-Grain Crops in India: An Application of Just & Pope’s Production Technique. AMBER – ABBS Management Business and Entrepreneurship Review, 7(2), Article 2. https://doi.org/10.23874/amber/2016/v7/i2/121780 Srivastav, A. L., Dhyani, R., Ranjan, M., Madhav, S., & Sillanpää, M. (2021). Climate-resilient strategies for sustainable management of water resources and agriculture. Environmental Science and Pollution Research, 28(31), 41576–41595. https://doi.org/10.1007/s11356-021-14332-4 Su, X., & Chen, M. (2022). Econometric Approaches That Consider Farmers’ Adaptation in Estimating the Impacts of Climate Change on Agriculture: A Review. Sustainability, 14(21), Article 21. https://doi.org/10.3390/su142113700 Tobin, D., Janowiak, M., Hollinger, D., Skinner, H., Swanston, C., Steele, R., Radhakrishna, R., & Chatrchyan, A. (2015). Northeast and Northern Forests Regional Climate Hub Assessment of Climate Change Vulnerability and Adaptation and Mitigation Strategies. United States Department of Agriculture. https://doi.org/10.32747/2015.6965350.ch Upadhyaya, A. (2018). Rice and wheat water productivity assessment in India. MOJ Ecology & Environmental Sciences, 3(6), 426–432. https://doi.org/10.15406/mojes.2018.03.00124 Varadan, R. J., & Kumar, P. (2014). Indigenous knowledge about climate change: Validating the perceptions of dryland farmers in Tamil Nadu. Indian Journal of Traditional Knowledge, 13(2), 390–397. http://nopr.niscpr.res.in/handle/123456789/27934 Venugopal, V., Chinnadurai, J. S., Lucas, R. A. I., & Kjellstrom, T. (2016). Occupational Heat Stress Profiles in Selected Workplaces in India. International Journal of Environmental Research and Public Health, 13(1), 89. https://doi.org/10.3390/ijerph13010089 Verma, S., Gupta, S., & Sen, P. (2020). Does climate change make foodgrain yields more unpredictable? Evidence from India (Working Paper No. 8161). CESifo. https://www.cesifo.org/en/publications/2020/working-paper/does-climate-change-make-foodgrain-yields-more-unpredictable von Braun, J., & Tadesse, G. (2012). Food Security, Commodity Price Volatility, and the Poor. In M. Aoki, T. Kuran, & G. Roland (Eds.), Institutions and Comparative Economic Development (pp. 298–312). Palgrave Macmillan. https://doi.org/10.1057/9781137034014_16 Wolfe, D., Beem-Miller, J., Chambliss, L., Chatrchyan, A., & Menninger, H. (2014). Climate Change Facts: Farming Success in an Uncertain Climate. (p. 4). Cornell University College of Agriculture and Life Sciences. Zaveri, E., Grogan, D. S., Fisher-Vanden, K., Frolking, S., Lammers, R. B., Wrenn, D. H., Prusevich, A., & Nicholas, R. E. (2016). Invisible water, visible impact: Groundwater use and Indian agriculture under climate change. Environmental Research Letters, 11(8), 084005. https://doi.org/10.1088/1748-9326/11/8/084005 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/123349 |