Doko Tchatoka, Firmin and Wang, Wenjie (2025): Identification-Robust Two-Stage Bootstrap Tests with Pretesting for Exogeneity.
Preview |
PDF
MPRA_paper_125017.pdf Download (4MB) | Preview |
Abstract
Pretesting for exogeneity has become a routine in many empirical applications involving instrumental variables (IVs) to decide whether the ordinary least squares or IV-based method is appropriate. Guggenberger (2010a) shows that the second-stage test - based on the outcome of a Durbin-Wu-Hausman type pretest for exogeneity in the first stage - has extreme size distortion with asymptotic size equal to 1 when the standard asymptotic critical values are used, even under strong identification and conditional homoskedasticity. In this paper, we make the following contributions. First, we show that both conditional and unconditional on the data, standard wild bootstrap procedures are invalid for the two-stage testing and therefore are not viable solutions to such size-distortion problem. Second, we propose an identification-robust two-stage test statistic that switches between the OLS-based and the weak-IV-robust statistics. Third, we develop a size-adjusted wild bootstrap approach for our two-stage test that integrates specific wild bootstrap critical values with an appropriate size-adjustment method. We establish uniform validity of this procedure under conditional heteroskedasticity or clustering in the sense that the resulting tests achieve correct asymptotic size no matter the identification is strong or weak.
Item Type: | MPRA Paper |
---|---|
Original Title: | Identification-Robust Two-Stage Bootstrap Tests with Pretesting for Exogeneity |
Language: | English |
Keywords: | DWH Pretest; Shrinkage; Instrumental Variable; Asymptotic Size; Wild Bootstrap; Bonferroni-based Size-correction; Clustering. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C21 - Cross-Sectional Models ; Spatial Models ; Treatment Effect Models ; Quantile Regressions C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C26 - Instrumental Variables (IV) Estimation |
Item ID: | 125017 |
Depositing User: | Dr. Wenjie Wang |
Date Deposited: | 22 Jun 2025 06:13 |
Last Modified: | 22 Jun 2025 06:13 |
References: | Andrews, D. W. , Guggenberger, P. , 2009a. Hybrid and size-corrected subsampling methods. Econometrica 77(3), 721–762. Andrews, D. W., Guggenberger, P., 2009b. Incorrect asymptotic size of subsampling procedures based on post-consistent model selection estimators. Journal of Econometrics 152(1), 19–27. Andrews, D. W. , Guggenberger, P. , 2010a. Applications of subsampling, hybrid, and size-correction methods. Journal of Econometrics 158(2), 285–305. Andrews, D. W., Guggenberger, P., 2010b. Asymptotic size and a problem with subsampling and with the m out of n bootstrap. Econometric Theory 26(2), 426–468. Andrews, I., Gentzkow, M., Shapiro, J. M., 2017. Measuring the sensitivity of parameter estimates to estimation moments. The Quarterly Journal of Economics 132(4), 1553–1592. Angrist, J. D., Evans, W. N., 1998. Children and their parents’ labor supply: evidence from exogenous variation in family size. The American Economic Review 88(3), 450–477. Angrist, J. D., Krueger, A. B. , 1991. Does compulsory school attendance affect schooling and earning?. Quarterly Journal of Economics 106(4), 979–1014. Angrist, J. D. , Lavy, V. , 1999. Using maimonides’ rule to estimate the effect of class size on scholastic achievement. The Quarterly journal of economics 114(2), 533–575. Angrist, J., Kolesár, M., 2024. One instrument to rule them all: The bias and coverage of just-id iv. Journal of Econometrics 240(2), 105398. Cameron, A. C., Gelbach, J. B., Miller, D. L., 2008. Bootstrap-based improvements for inference with clustered errors. The Review of Economics and Statistics 90(3), 414–427. Cavaliere, G., Georgiev, I., 2020. Inference under random limit bootstrap measures. Econometrica 88(6), 2547–2574. Conley, T. G., Hansen, C. B., Rossi, P. E., 2012. Plausibly exogenous. Review of Economics and Statistics 94(1), 260–272. Crudu, F., Mellace, G. , Sándor, Z. , 2021. Inference in instrumental variable models with heteroskedasticity and many instruments. Econometric Theory 37(2), 281–310. Davidson, R. , Flachaire, E. , 2008. The wild bootstrap, tamed at last. Journal of Econometrics 146(1), 162–169. Davidson, R. , MacKinnon, J. G. , 2008. Bootstrap inference in a linear equation estimated by instrumental variables. The Econometrics Journal 11(3), 443–477. Davidson, R., MacKinnon, J. G., 2010. Wild bootstrap tests for iv regression. Journal of Business & Economic Statistics 28(1), 128–144. Djogbenou, A. A., MacKinnon, J. G., Nielsen, M. Ø., 2019. Asymptotic theory and wild bootstrap inference with clustered errors. Journal of Econometrics 212(2), 393–412. Doko Tchatoka, F., Dufour, J.-M., 2008. Instrument endogeneity and identification-robust tests: some analytical results. Journal of Statistical Planning and Inference 138(9), 2649–2661. Doko Tchatoka, F., Dufour, J.-M., 2014. Identification-robust inference for endogeneity parameters in linear structural models. The Econometrics Journal 17(1), 165–187. Doko Tchatoka, F., Dufour, J.-M., 2018. Instrument endogeneity and identification-robust tests: some analytical results. Journal of Econometrics Forthcoming. Doko Tchatoka, F., Dufour, J.-M., 2024. Exogeneity tests and weak identification in iv regressions: Asymptotic theory and point estimation. Journal of Econometrics, p. 105821. Finlay, K. , Magnusson, L. M. , 2019. Two applications of wild bootstrap methods to improve inference in cluster-iv models. Journal of Applied Econometrics 34(6), 911–933. Gonçalves, S. , White, H., 2004. Maximum likelihood and the bootstrap for nonlinear dynamic models. Journal of Econometrics 119(1), 199–219. Guggenberger, P., 2010a. The impact of a hausman pretest on the asymptotic size of a hypothesis test. Econometric Theory 26(2), 369–382. Guggenberger, P., 2010b. The impact of a hausman pretest on the size of a hypothesis test: The panel data case. Journal of Econometrics 156(2), 337–343. Guggenberger, P., 2012. On the asymptotic size distortion of tests when instruments locally violate the exogeneity assumption. Econometric Theory 28, 387–421. Guggenberger, P., Kumar, G., 2012. On the size distortion of tests after an overidentifying restrictions pretest. Journal of Applied Econometrics 27(7), 1138–1160. Hahn, J., Ham, J., Moon, H. R., 2010. The Hausman test and weak instruments. Journal of Econometrics 160, 289–299. Han, S., McCloskey, A., 2019. Estimation and inference with a (nearly) singular Jacobian. Quantitative Economics 10(3), 1019–1068. Hansen, B. E., 2005. Challenges for econometric model selection. Econometric Theory 21(1), 60–68. Hansen, B. E., 2017. Stein-like 2sls estimator. Econometric Reviews 36(6-9), 840–852. Hansen, B. E., Lee, S., 2019. Asymptotic theory for clustered samples. Journal of econometrics 210(2), 268–290. Hansen, C., Hausman, J., Newey, W., 2008. Estimation with many instrumental variables. Journal of Business and Economic Statistics 26(4), 398–422. Kabaila, P. , 1995. The effect of model selection on confidence regions and prediction regions. Econometric Theory 11(3), 537–549. Kaffo, M., Wang, W., 2017. On bootstrap validity for specification testing with many weak instruments. Economics Letters 157, 107–111. Keane, M. P., Neal, T., 2024. A practical guide to weak instruments. Annual Review of Economics 16, 185–212. Lee, D. S., McCrary, J., Moreira, M. J., Porter, J., 2022. Valid t-ratio inference for iv. American Economic Review 112(10), 3260–3290. Leeb, H., Pötscher, B. M., 2005. Model selection and inference: Facts and fiction. Econometric Theory 21(1), 21–59. Lim, D., Wang, W. , Zhang, Y. , 2024a. A conditional linear combination test with many weak instruments. Journal of Econometrics 238(2), 105602. Lim, D., Wang, W. , Zhang, Y. , 2024b. A dimension-agnostic bootstrap anderson-rubin test for instrumental variable regressions. arXiv preprint arXiv:2412.01603 . Maasoumi, E., 1978. A modified stein-like estimator for the reduced form coefficients of simultaneous equations. Econometrica, pp. 695–703. MacKinnon, J. G., 2023. Fast cluster bootstrap methods for linear regression models. Econometrics and Statistics 26, 52–71. MacKinnon, J. G., Nielsen, M. Ø., Webb, M. D., 2021. Wild bootstrap and asymptotic inference with multiway clustering. Journal of Business & Economic Statistics 39(2), 505–519. MacKinnon, J. G., Nielsen, M. Ø. , Webb, M. D. , 2023. Cluster-robust inference: A guide to empirical practice. Journal of Econometrics 232(2), 272–299. MacKinnon, J. G., Webb, M. D., 2017. Wild bootstrap inference for wildly different cluster sizes. Journal of Applied Econometrics 32(2), 233–254. Matsushita, Y., Otsu, T., 2024. A jackknife lagrange multiplier test with many weak instruments. Econometric Theory 40(2), 447–470. McCloskey, A., 2017. Bonferroni-based size-correction for nonstandard testing problems. Journal of Econometrics 200(1), 17–35. McCloskey, A., 2020. Asymptotically uniform tests after consistent model selection in the linear regression model. Journal of Business & Economic Statistics 38(4), 810–825. Mikusheva, A., Sun, L., 2022. Inference with many weak instruments. The Review of Economic Studies 89(5), 2663–2686. Moreira, M. J., Porter, J., Suarez, G., 2009. Bootstrap validity for the score test when instruments may be weak. Journal of Econometrics 149(1), 52–64. Roodman, D., Nielsen, M. Ø., MacKinnon, J. G., Webb, M. D., 2019. Fast and wild: Bootstrap inference in stata using boottest. The Stata Journal 19(1), 4–60. Staiger, D., Stock, J. H., 1997. Instrumental variables regression with weak instruments. Econometrica 65(3), 557–586. Wang, W., 2020. On the inconsistency of nonparametric bootstraps for the subvector anderson–rubin test. Economics Letters 191, 109157. Wang, W. , Doko Tchatoka, F. , 2018. On bootstrap inconsistency and bonferroni-based sizecorrection for the subset anderson–rubin test under conditional homoskedasticity. Journal of Econometrics 207(1), 188–211. Wang, W., Kaffo, M., 2016. Bootstrap inference for instrumental variable models with many weak instruments. Journal of Econometrics 192(1), 231–268. Wang, W., Liu, Q., 2015. Bootstrap-based selection for instrumental variables model. Economics Bulletin 35(3), 1886–1896. Wang, W., Zhang, Y., 2024. Wild bootstrap inference for instrumental variables regressions with weak and few clusters. Journal of Econometrics 241(1), 105727. Wang, W., Zhang, Y., 2025. Gradient wild bootstrap for instrumental variable quantile regressions with weak and few clusters. arXiv preprint arXiv:2408.10686. Young, A., 2022. Consistency without inference: Instrumental variables in practical application. European Economic Review 147, 104112. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/125017 |