Lee, David (2025): Robust Parameter Estimation for Financial Data Simulation.
![]() |
PDF
MPRA_paper_125703.pdf Download (491kB) |
Abstract
Financial market data are known to be far from normal and replete with outliers, i.e., “dirty” data that contain errors. Data errors introduce extreme or aberrant data points that can significantly distort parameter estimation results. This paper proposes a robust estimation approach to achieve stable and accurate results. The robust estimation approach is particularly applicable for financial data that often features the three situations we are protecting against: occasional rogue values (outliers), small errors and underlying non-normality.
Item Type: | MPRA Paper |
---|---|
Original Title: | Robust Parameter Estimation for Financial Data Simulation |
English Title: | Robust Parameter Estimation for Financial Data Simulation |
Language: | English |
Keywords: | robust parameter estimation, financial market data, market data simulation, risk factor. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling G - Financial Economics > G1 - General Financial Markets > G17 - Financial Forecasting and Simulation |
Item ID: | 125703 |
Depositing User: | David Lee |
Date Deposited: | 27 Aug 2025 09:06 |
Last Modified: | 27 Aug 2025 09:06 |
References: | Bassik, O. et al., 2025, “Robust parameter estimation for rational ordinary different equations,” Applied Mathematics and Computation, 509 (1). Fujisawa, H., 2013, “Normalized estimating equation for robust parameter estimation,” Electron. J. Statist., 7, 1587-1606. Guney, Y. and Arslan, O., 2025, “Robust parameter estimation and variable selection in regression models for asymmetric heteroscedastic data,” Journal of Applied Statistics, 1-38. Johnson, R. Cairano, S. and Sanfelice, R., 2024, “Robust parameter estimation for hybrid dynamical systems with linear parametric uncertainty,” Automatica, 167, 111766. Liu, C., Han, M., Gong, Z. and Teo, K., 2021, “Robust parameter estimation for constrained time-delay systems with inexact measurements,” Journal of Industrial & Management Optimization, 17 (1), 317-337. Liu, Y., Wang, H. and Zhang W., 2021, “Robust parameter estimation with outlier-contaminated correlated measurements and applications to aerodynamic coefficient identification,” Aerospace Science and Technology, 118, 106995 Xu, Y., Iglewicz, B. and Chervoneva, I., 2014, “Robust estimation of the parameters of g- and -h distributions, with applications to outlier detection,” Computational Statistics & Data Analysis, 75, 66-80 Wang, M., Park, C. and Sun X., 2015, “Simple robust parameter estimation for the Birnbaum-Saunders distribution,’ Journal of Statistical Distributions and Applications, 14 Zhu, T., Xie, J. and Sim, M., 2021, “Joint estimation and robustness optimization,” 68 (3). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/125703 |