Logo
Munich Personal RePEc Archive

Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?

Manzan, Sebastiano and Zerom, Dawit (2009): Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?

[thumbnail of MPRA_paper_14387.pdf]
Preview
PDF
MPRA_paper_14387.pdf

Download (478kB) | Preview

Abstract

Much of the US inflation forecasting literature deals with examining the ability of macroeconomic indicators to predict the mean of future inflation, and the overwhelming evidence suggests that the macroeconomic indicators provide little or no predictability. In this paper, we expand the scope of inflation predictability and explore whether macroeconomic indicators are useful in predicting the distribution of future inflation. To incorporate macroeconomic indicators into the prediction of the conditional distribution of future inflation, we introduce a semi-parametric approach using conditional quantiles. The approach offers more flexibility in capturing the possible role of macroeconomic indicators in predicting the different parts of the future inflation distribution. Using monthly data on US inflation, we find that unemployment rate, housing starts, and the term spread provide significant out-of-sample predictability for the distribution of core inflation. Importantly, this result is obtained for a forecast evaluation period that we intentionally chose to be after 1984, when current research shows that macroeconomic indicators do not add much to the predictability of the future mean inflation. This paper discusses various findings using forecast intervals and forecast densities, and highlights the unique insights that the distribution approach offers, which otherwise would be ignored if we relied only on mean forecasts.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.