El Bouhadi, Abdelhamid and Achibane, Khalid (2009): The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets?
Preview |
PDF
MPRA_paper_19482.pdf Download (2MB) | Preview |
Abstract
The uncertainty plays a central role in most of the problems which addressed by the modern financial theory. For some time, we know that the uncertainty under the speculative price varies over the time. However, it is only recently that a lot of studies in applied finance and monetary economics using the explicit modelling of time series involving the second and the higher moments of variables. Indeed, the first tool appeared in order to model such variables has been introduced by Engel (1982). This is the autoregressive conditional heteroskedasticity and its many extensions. Thus, with the emergence and development of these models, Value-at-Risk, which plays a major role in assessment and risk management of financial institutions, has become a more effective tool to measure the risk of asset holdings. Following the current financial debacle, we give the simple question about the progress and some achievements made in the context of emerging and pre-emergent financial markets microstructure which can sustain and limit the future fluctuations. Today, we know that the crisis has no spared any financial market in the world. The magnitude and damage of the crisis effects vary in the space and time. In the Moroccan stock market context, it was found that the effects were not so harmful and that the future of these markets faces a compromise or at least a long lethargy. Indeed, inspired by these events, our study attempts to undertake two exercises. In first, we are testing the ability of the nonlinear ARCH and GARCH models (EGARCH, TGARCH, GJR-GARCH, QGARCH) to meet the number of expected exceedances (shortfalls) of VaR measurement. In second, we are providing a forecasting volatility under the time-varying of VaR.
Item Type: | MPRA Paper |
---|---|
Original Title: | The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets? |
Language: | English |
Keywords: | Market Microstructure, ARCH Models, VaR, Time-Varying Volatility, Forecasting Volatility, Casablanca Stock Exchange. |
Subjects: | G - Financial Economics > G1 - General Financial Markets > G14 - Information and Market Efficiency ; Event Studies ; Insider Trading C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection G - Financial Economics > G1 - General Financial Markets > G18 - Government Policy and Regulation C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes |
Item ID: | 19482 |
Depositing User: | Abdelhamid El Bouhadi |
Date Deposited: | 21 Dec 2009 05:57 |
Last Modified: | 29 Sep 2019 17:32 |
References: | Alexander, C. O. and C. T. Leigh (1997), “On The Covariance Matrices Used in Value at Risk Models,” Journal of Derivatives, 4, 50-62. Artzner, P., Delbaen, F., Eber, J.M., Heath, D. (1999), “Coherent measures of risk”, Mathematical Finance 9(3). Bera, A.K. and Higgins, M.L., 1997. “ARCH and Bilinearity as Competing Models for Nonlinear Dependence”, Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 43-50, January. Berkowitz, J, Christoffersen P.F. et Pelletier (2005), “Evaluating Value-at-Risk Models with Desk-Level Data”, North Carolina State University, Department of Economics, Working Paper 010. Berkowitz, J. and O'Brien, J. (2002), “How Accurate are Value-at-Risk Models at Commercial Banks?”, Journal of Finance, 57, 1093-1112. Blanchet V., (2000), Le modèle GARCH (1,1) en finance : Etude de la volatilité du CAC40 sur données de haute fréquence, Mémoire de DEA, Université de Montpellier I, Faculté des Sciences Economiques, LAMETA. Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroskedasticity”, Journal of Econometrics, vol. 31, pp. 307-327. Bollerslev, T., Chou, R., Jayaraman, N., and Kroner, K., (1986), « les modèles ARCH en Finance : un point sur la théorie et les résultats empiriques » in Annales d’Economie et de Statistique, vol. 24. Bourbonnais, R. and Terraza, M., (1998), Analyse des séries temporelles en économie, PUF. Bourbonnais, R., (2000), Econométrie, Dunod. Butler J.S. and Schachter B. (1998), “Estimating VaR with a Precision Measure by Combining Kernel Estimation with Historical Simulation”, Working Paper, Vanderbilt University. Cai, J. (1994), “A Markov Model of Unconditional Variance in ARCH,” Journal of Business and Economic Statistics, 12, 309-316. Campbell, J. Y., Lo, A. W, and A. C. McKinley (1995), “The Econometrics of Financial Markets,” Manuscript, June. Candelon, B, Colletaz, G, Hurlin C. et Tokpavi. (2008), .Backtesting Value-at-Risk: A GMM duration-based test., Working Paper. Chang, R., Hsu, S.T., and Huang, N.K., (1995), “The Effects of Trading Methods on Volatility and Liquidity”, 7th PACAP Conference, Manila. Charles, A., (2000), Origine de l’effet week-end dans l’indice boursier CAC40 : Une approche par l’hétéroscédasticité saisonnière, Mémoire de DEA, Université de Montpellier I, Faculté des Sciences Economiques, LAMETA. Christoffersen, P.F. (1998), “Evaluating Interval Forecasts”, International Economic Review, 39, pp. 841-862. Christoffersen, P.F., and Diebold F.X. (2000), “How Relevant is Volatility Forecasting for Financial Risk Management?”, The Review of Economics and Statistics. Corwin, S.A. and Lipson M.L., (2000), “Order Flow and Liquidity around NYSE Trading Halts”, Journal of Finance, vol. 55, n°4. Crnkovic, C., and Drachman, J. (1997), Quality Control in VaR: Understanding and Applying Value-at-Risk, London, Risk Publications. Cuthbertson, K., (2001), Economie financière quantitative : Actions, obligations et taux de change, De Boeck Université. Dacorogna, M., Muller, U., Nagler, R., Olsen, R. and Pictet, O., (1993), “A geographical model for the daily and weekly seasonal volatility in the foreign exchange market”, in Journal of international money and finance, vol. 12. Dickey, D.A., and Fuller, W.A., (1979), “Distribution of the Estimators for Autoregressive Time Series with a Unit Root”, Journal of the American Statistical Association, vol. 74. Dickey, D.A., and Fuller, W.A., (1981), “The Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root”, Econometrica, vol. 49. Diebold, F.X., Gunther, T.A. and Tay, A.S. (1998), “Evaluating Density Forecasts”, International Economic Review, 39, pp. 863-883. Drost, F. and Nijman, T., (1993), “Temporel Agregation of GARCH Processes”, Econometrica, vol. 61. Dubreuille, S., (1999), Liquidité et formation des prix sur le MATIF, Economica. Duffie, D. and J. Pan (1997), “An Overview of Value-at-Risk,” Journal of Derivatives, 4, 7-49. Efron, B. (1979), “Bootstrapping Methods: Another Look at the Jackknife,” Annals of Statistics, 7, 1-26. Engle, R.F. (2001), “The Use of ARCH/GARCH Models in Applied Econometrics”, Journal of Economic Perspectives, 15(4). Engle, R.F., Lilien, D.M. and Robins, R.P. (1987), “Estimating Time-varying Risk Premia in the Term Structure: The ARCH-M Model”, Econometrica 55, 391–408. Engle, R. F. and Manganelli, S. (1999), “CAViaR: Conditional Autoregressive Value-at-Risk by Regression Quantiles,” UCSD Discussion Paper. Ghysels, E., (1994), « L’analyse économétrique et la saisonnalité », in L’Actualité Economique, vol. 70, n°1. Glen, J., (1994), “An Introduction to the Microstrucutre of Emerging Markets”, Discussion Paper n°24, IFC. Glosten, L. R., Jagannathan, R. and Runkle, D. (1993), “On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,” Journal of Finance, 48, 1779-1801. Gokcan, S. (2000), “Forecasting Volatility of Emerging Stock Markets: Linear Versus Non-linear GARCH Models”, in Journal of Forecasting, n°19. Goldfeld, S.M. and Quandt, R.E. (1965), “Some Tests for Homoskedasticity”, Journal of the American Statistical Association, vol. 60. Gouriéroux, C. et Monfort, A. (1990), Séries temporelles et modèles dynamiques, Economica, Paris. Gray, S. F. (1996), “Modeling the Conditional Distribution of Interest Rates as a Regime-switching Process,” Journal of Financial Economics, 42, 27-62. Grayling, S., editor, (1997), VaR: Understanding and Applying Value-at-Risk, London: Risk. Hamilton, J. D. and R. Susmel (1994), “Autoregressive Conditional Heteroskedasticity and Changes in Regime,” Journal of Econometrics, 64, 307-333. Hamilton, J. D., Time Series Analysis, Princeton University Press, 1994. Hansen, B.E. (1992), “The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP,” Journal of Applied Econometrics, 7, S61-S82. Harvey, A., Ruiz, E. and Sentana, E. (1992), “Unobserved component time series models with Arch disturbances”, Journal of Econometrics, Elsevier, vol. 52(1-2), pages 129-157. Hendricks, D. (1996), “Evaluation of Value-at-risk Models Using Historical Data”, Federal Reserve Bank of New York Economic Policy Review, 2, 39-70. Higgins, M.L. and Bera A.K. (1990), “A Class Of Nonlinear ARCH Models”, University of California at San Diego”, Economics Working Paper Series 90-40, Department of Economics, UC San Diego. Hurlin C. et Tokpavi S. (2008), « Une Evaluation des Procédures de Backtesting : Tout va pour le Mieux dans le Meilleur des Mondes », Finance, vol. 29(1). Morgan, J.P. (1995), “RiskMetrics”, Technical Manual. Jackson, P., Maude, and Perraudin D.W. (1997), “Bank Capital and Value-at-Risk”, Journal of Derivatives 4 (spring), 73-90, and 1997, in Grayling, S., editor, VaR: Understanding and Applying Value-at-Risk, London: Risk. Jorion, P. (2007), Value-at-Risk, Third edition, McGraw-Hill. Jorion, Ph. (1995), “Predicting Volatility in the Foreign Exchange Market,” Journal of Finance. Jorion, Ph. (1995), “Risk2: Measuring the Risk in Value-at-Risk”. Financial Analysts Journal 52 (November). Kamionka, T., (2000), « La modélisation des données haute fréquence », Working Paper n°2000-58, CREST. Kupiec, P., 1995, “Techniques for Verifying the Accuracy of Risk Measurement Models”, Journal of Derivatives (winter), 73-84, 1996, in Risk Measurement and Systemic Risk. Lardic, S. and Mignon, M., (2002), Econométrie des séries temporelles macroéconomiques et financières, Economica. Lumsdaine, R.L 1995. “Finite-Sample properties of the maximum likelihood estimator in GARCH (1,1) and IGARCH (1,1) Models: A Monte Carlo Investigation,” Journal of Business and Economic Statistics. McCurdy, T.H. and Morgan, I. (1990b), “Tests for Systematic Risk Components in Deviations from Uncovered Interest rate parity”, Unpublished Manuscript, Department of Economics, Queen’s University. McNees, S. K., “A Critique of Alternative Methods of Comparing Macroeconomic Models”, in Ramsey, J. and Kmenta, ed. Methodology of Macroeconomic Models, North-Holland, 1980. Mignon, M., (1998), Marchés financiers et modélisation des rentabilités boursières, Economica. Nelson, D.B. (1990), “ARCH Models as Diffusion Approximation”, Journal of Econometrics, 45, 7-38. Olave, P. and Miguel, J., (2001), “The Risk Premium and Volatility in the Spanish Stock Market: A forecasting approach”, in Economie Appliquée, vol. 54, n°4. Phillips, P.C.B. and Perron, P., (1988), “Testing for a Unit Root in Time Series Regression”, Biometrica, vol. 25. Pritsker, M. (2006), “The hidden dangers of historical simulation”, Journal of Banking & Finance, Volume 30. Rzepkowski, B., (2001), « Pouvoir prédictif de la volatilité implicite dans le prix des options de change », Working Paper de CEPII n° 2001-01. Stoll, H. and Whaley, R., (1990), “Stock Market Structure and Volatility”, Review of Financial Studies, n°3. White, H., (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity”, Econometrica, vol. 48, n°4. Yatchew A. (2003), SemiParametric Regression or the Applied Econometrician, Cambridge University Press. Zakoian, J.M., (1990), “Threshold heteroskedasticity models”, Manuscript, CREST, INSEE. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/19482 |