Korobilis, Dimitris (2008): Forecasting in vector autoregressions with many predictors. Published in: Advances in Econometrics , Vol. 23, (November 2008): pp. 403-431.
Preview |
PDF
MPRA_paper_21122.pdf Download (195kB) | Preview |
Abstract
This paper addresses the issue of improving the forecasting performance of vector autoregressions (VARs) when the set of available predictors is inconveniently large to handle with methods and diagnostics used in traditional small scale models. First, available information from a large dataset is summarized into a considerably smaller set of variables through factors estimated using standard principal components. However, even in the case of reducing the dimension of the data the true number of factors may still be large. For that reason I introduce in my analysis simple and efficient Bayesian model selection methods. Model estimation and selection of predictors is carried out automatically through a stochastic search variable selection (SSVS) algorithm which requires minimal input by the user. I apply these methods to forecast 8 main U.S. macroeconomic variables using 124 potential predictors. I find improved out of sample fit in high dimensional specifications that would otherwise suffer from the proliferation of parameters.
Item Type: | MPRA Paper |
---|---|
Original Title: | Forecasting in vector autoregressions with many predictors |
Language: | English |
Keywords: | Bayesian VAR, forecasting, model selection & averaging, large datasets |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C53 - Forecasting and Prediction Methods ; Simulation Methods C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General |
Item ID: | 21122 |
Depositing User: | Dimitris Korobilis |
Date Deposited: | 07 Mar 2010 00:20 |
Last Modified: | 26 Sep 2019 13:57 |
References: | Andersson, M. K., & Karlsson, S. (2008). Bayesian forecast combination for VAR models. In: S. Chib, W. Griffiths, G. Koop & D. Terrell (Eds), Bayesian Econometrics (pp. 501-524). Advances in Econometrics, Vol. 23. Oxford: Elsevier. Banbura, M., Giannone, D., & Reichlin, L. (2007). Bayesian VARs with large panels. London: CEPR. Barbieri, M. M., & Berger, J. O. (2004). Optimal predictive model selection. The Annals of Statistics, 32, 870-897. Bernanke, B. S., & Boivin, J. (2003). Monetary policy in a data-rich environment. Journal of Monetary Economics, 50, 525-546. Bernanke, B. S., Boivin, J., & Eliasz, P. (2005). Measuring the effects of monetary policy: A factor-augmented vector autoregressive (FAVAR) approach. Quarterly Journal of Economics, 120, 387-422. Brown, P. J., Vannucci, M., & Fearn, T. (1998). Multivariate Bayesian variable selection and prediction. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 60, 627-641. Brown, P. J., Vannucci, M., & Fearn, T. (2002). Bayes model averaging with selection of regressors. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 64, 519-536. Chipman, H., George, E. I., & McCulloch, R. E. (2001). The practical implementation of Bayesian model selection. In: P. Lahiri (Ed.), Model selection (pp. 67-116). Lecture Notes -Monograph Series, Vol. 38. Beachwood, OH: Institute of Mathematical Statistics. Favero, C. A., Marcellino, M., & Neglia, F. (2005). Principal components at work: The empirical analysis of monetary policy with large datasets. Journal of Applied Econometrics, 20, 603-620. Fernandez, C., Ley, E., & Steel, M. (2001). Benchmark priors for Bayesian model averaging. Journal of Econometrics, 100, 381-427. George, E. I., & Foster, D. P. (2000). Calibration and empirical Bayes variable selection. Biometrika, 87, 731-747. George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statistical Association, 88, 881-889. George, E. I., & McCulloch, R. E. (1997). Approaches to Bayesian variable selection. Statistica Sinica, 7, 339-379. George, E. I., Sun, D., & Ni, S. (2008). Bayesian stochastic search for VAR model restrictions. Journal of Econometrics, 142, 553-580. Gianone, D., Reichlin, L., & Sala, L. (2004). Monetary policy in real time (and comments). In: M. Gertler & K. Rogoff (Eds), NBER Macroeconomics Annual 2004 (pp. 161-224). Cambridge: The MIT Press. Hoeting, J., Madigan, D., Raftery, A., & Volinsky, C. (1998). Bayesian model averaging: A tutorial. Statistical Science, 14, 382-417. Kadiyala, K. R., & Karlsson, S. (1997). Numerical methods for estimation and inference in Bayesian VAR-models. Journal of Applied Econometrics, 12, 99-132. Koop, G., & Potter, S. (2004). Forecasting in dynamic factor models using Bayesian model averaging. Econometrics Journal, 7, 550-565. Smith, M., & Kohn, R. (1996). Nonparametric regression using Bayesian variable section. Journal of Econometrics, 75, 317-343. Smith, M., & Kohn, R. (2002). Parsimonious covariance matrix estimation for longitudinal data. Journal of the American Statistical Association, 97, 1141-1153. Stock, J. H., & Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic Statistics, 20, 147-162. Stock, J. H., & Watson, M. W. (2003). Forecasting output and inflation: The role of asset prices. Journal of Economic Literature, 41, 788-829. Stock, J. H., & Watson, M. W. (2005a). Forecasting with many predictors. Unpublished Manuscript. Princeton University, Princeton, NJ (prepared for The Handbook of Economic Forecasting). Stock, J. H., & Watson, M. W. (2005b). Implications of factor models for VAR analysis. Unpublished Manuscript. Princeton University, Princeton, NJ. Strachan, R. W., & van Dijk, H. K. (2007). Bayesian model averaging in vector autoregressive processes with an investigation of stability of the US great ratios and risk of a liquidity trap in the USA, UK and Japan. Econometric Institute Report EI 2007-11. Erasmus University Rotterdam, the Netherlands. Yuan, M., & Lin, Y. (2005). Efficient empirical Bayes variable selection and estimation in linear models. Journal of the American Statistical Association, 100, 1215-1225. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/21122 |