Weihs, Claus and Calzolari, Giorgio and Panattoni, Lorenzo (1986): The behavior of trust-region methods in FIML estimation. Published in: Computing , Vol. 38, No. 38 (1987): pp. 89-100.
Preview |
PDF
MPRA_paper_24122.pdf Download (417kB) | Preview |
Abstract
This paper presents a Monte-Carlo study on the practical reliability of numerical algorithms for FIML-estimation in nonlinear econometric models. The performance of different techniques of Hessian approximation in trust-region algorithms is compared regarding their "robustness" against "bad" starting points and their "global" and "local" convergence speed, i.e. the gain in the objective function, caused by individual iteration steps far off from and near to the optimum. Concerning robustness and global convergence speed the crude GLS-type Hessian approximations performed best, efficiently exploiting the special structure of the likelihood function. But, concerning local speed, general purpose techniques were strongly superior. So, some appropriate mixtures of these two types of approximations turned out to be the only techniques to be recommended.
Item Type: | MPRA Paper |
---|---|
Original Title: | The behavior of trust-region methods in FIML estimation |
Language: | English |
Keywords: | Econometrics; Monte Carlo methods; numerical methods; trust-region methods; FIML estimation |
Subjects: | C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C87 - Econometric Software C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C30 - General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis |
Item ID: | 24122 |
Depositing User: | Giorgio Calzolari |
Date Deposited: | 27 Jul 2010 20:33 |
Last Modified: | 06 Oct 2019 08:45 |
References: | Amemiya, T.: The maximum likelihood and the nonlinear three-stage least squares estimator in the general nonlinear simultaneous equation model. Econometrica, 45, 955-968 (1977). Belsley. D. A.: On the computational competitiveness of full-information maximum-likelihood and three-stage least-squares in the estimation of nonlinear simultaneous-equation models. Journal of Econometrics 9. 315-342 (1979). Belsley, D. A.: On the efficient computation of the nonlinear full-information maximum likelihood estimator. Journal of Econometrics 14. 203 -225 (1980). Berndt, E. K, Hall. B. H.. Hall, R. E., Hausman, J. A. : Estimation and inference in nonlinear structural models. Annals of Economic and Social Measurement 3. 653-665 (1974). Calzolari, G , Panattoni, L.: A simulation study on FIML covariance matrix. Pisa. Centro Scientifico IBM, paper presented al the European Meeting of the Econometric Society. Madrid, September 3-7 (1984). Calzolari, G., Panattoni, L.: Gradient methods in FIML estimation of econometric models. Pisa: Centro Scientifico IBM,. paper presented at the International Conference on Economic Policies and Control Theory. Venezia, January 29 -February 1 (1985). Calzolari. G. Panattoni, L., Weihs, C.: Computational efficiency of FIML estimation. Pisa: Centro Scientifico IBM, mimeo (1985). Dagenais, M. G.: The computation of FIML-estimates as iterative generalized least-squares estimates in linear and nonlinear simultaneous equation models. Econometrica 46, 1351 -1362 (1978). Dennis. J. E. Jr., More', J. J.: Quasi.Newton methods, motivation and theory. SIAM Review 19, 46 -89 (1977). More', J. J.: Recent developments in algorithms and software for trust-region methods. In: Mathematlcal Programming. The State of the Art. Bonn 1982 (Bachem, A., Groetschel, M., Korte. B., eds.), pp. 258 -287. Springer-Verlag 1983. Parke, W. R.: An algorithm for FIML and 3SLS estimation of large nonlinear models. Econometrica 50, 81-95 (1982). Powell, M. J. D.: Convergence properties of a c1ass or minimization algorithms. In: Nonlinear Programming 2 (Mangasarian, O. L., Meyer. R. R., Robinson, S. M., eds.), pp 1-27. Academic Press 1975. Theil, H.: Principles of Econometrics. J. Wiley 1971. Weihs, C.: IAS-System Bonn. User's Manual. University of Bonn, Wirtschaftstheoretische Abt. 1, discussion paper No. 144a (1984). Weihs, C.: Convergence of an algorithm for FIML-estimation in (non-)linear econometric models. In: Methods of Operations Research 49 (Brucker, P., Pauly, R., eds.), pp. 101 -126. Verlag A. Hain 1985. Weihs. C.: Auswirkungen von Fehlern in den Daten auf Parameterschaetzungen und Prognosen (Effects of data errors on parameter estimates and forecasts). Dissertation, University of Trier (FRG) (to appear) (1987). |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/24122 |