Antonakakis, Nikolaos and Darby, Julia (2012): Forecasting Volatility in Developing Countries' Nominal Exchange Returns.
Preview |
PDF
MPRA_paper_40875.pdf Download (333kB) | Preview |
Abstract
This paper identifies the best models for forecasting the volatility of daily exchange returns of developing countries. An emerging consensus in the recent literature focusing on industrialised counties has noted the superior performance of the FIGARCH model in the case of industrialised countries, a result that is reaffirmed here. However, we show that when dealing with developing countries’ data the IGARCH model results in substantial gains in terms of the in-sample results and out-of-sample forecasting performance.
Item Type: | MPRA Paper |
---|---|
Original Title: | Forecasting Volatility in Developing Countries' Nominal Exchange Returns |
Language: | English |
Keywords: | Exchange rate volatility; estimation; forecasting; developing countries |
Subjects: | C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models E - Macroeconomics and Monetary Economics > E5 - Monetary Policy, Central Banking, and the Supply of Money and Credit > E58 - Central Banks and Their Policies G - Financial Economics > G1 - General Financial Markets > G15 - International Financial Markets F - International Economics > F3 - International Finance > F31 - Foreign Exchange |
Item ID: | 40875 |
Depositing User: | Nikolaos Antonakakis |
Date Deposited: | 29 Aug 2012 04:19 |
Last Modified: | 27 Sep 2019 04:59 |
References: | Andersen, T. G. and Bollerslev T. 1998a. ‘Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts’, International Economic Review, Vol.39 (4), pp. 885-905. Andersen, T. G. and Bollerslev T. 1998b. ‘Deutsche Mark-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer Run Dependencies’, Journal of Finance, Vol. 53 (1), pp. 219-265. Andersen, T.G., Bollerslev T., Diebold F.X. and Labys P. 1999. ‘(Understanding, Optimizing, Using and Forecasting) Realized Volatility and Correlation’, Working Paper Series, No 99-061, New York University, Leonard N. Stern School, Finance Department. Andersen, T.G., Bollerslev T., Diebold F.X. and Labys P. 2001. ‘The Distribution of Realized Exchange Rate Volatility’, Journal of the American Statistical Association, Vol. 96 (453), pp. 42-55. Andersen, T.G., Bollerslev T., Diebold F.X. and Labys P. 2003. ‘Modeling and Forecasting Realized Volatility’, Econometrica, Vol. 71 (2), pp. 579-625. Baillie, R. T. and T. Bollerslev 1989. ‘Common Stochastic Trends in a System of Exchange Rates’, Journal of Finance, Vol. 44 (1), pp 167-181. Baillie, R. T., Bollerslev, T. and Mikkelsen, H. O. 1996. ‘Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity’, Journal of Econometrics, Vol. 74 (1), pp. 3-30. Balaban, E. 2004. ‘Comparative Forecasting Performance of Symmetric and Asymmetric Conditional Volatility Models of an Exchange Rate’, Economic Letters, Vol. 83 (1), pp.99-105. Bollerslev, T. 1986 ‘Generalized Autoregressive Conditional Heteroskedasticity’, Journal of Econometrics, Vol. 31(3), pp 307-327. Bollerslev, T. 1987. ‘A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return’, The Review of Economics and Statistics, vol. 69 (3), pp. 542-47. Bollerslev, T., Chou R. Y. and Kroner, K. F. 1992. ‘ARCH Modelling in Finance: A Review of the Theory and Empirical Evidence’, Journal of Econometrics, Vol. 52 (1-2), pp. 55-59. Bollerslev, T. and Mikkelsen, H. O. 1996. ‘Modeling and Pricing Long Memory in Stock Market Volatility’, Journal of Econometrics, Vol. 73 (1), pp. 151-184. Chong, Y. Y., and Hendry, D. F., 1986. ‘Econometric Evaluation of Linear Macro-Economic Models’, Review of Economic Studies, Vol. 53 (4), pp. 671-90. Cramer, J. S. 1986. ‘Econometric Applications of Maximum Likelihood Methods’, Cambridge University Press, New York, NY. Davidson, J. 2004. ‘Moment and Memory Properties of Linear Conditional Heteroskedasticity Models, and a New Model’, Journal of Business and Economic Statistics, Vol. 22 (1), pp. 16-29. Devereux, M. B. and Lane, P. R., 2003. ‘Understanding Bilateral Exchange Rate Volatility’, Journal of International Economics, Vol. 60 (1), pp. 109-132. Diebold F. X. and Inoue A. 2001. ‘Long Memory and Regime Switching’, Journal of Econometrics, Vol. 105 (1), pp. 131–159. Diebold, F. X. and Mariano, R. S. 1995. ‘Comparing Predictive Accuracy’, Journal of Business and Economic Statistics, Vol. 13 (3), pp. 253-263. Engle, R. F. 1982. ‘Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation’, Econometrica, Vol. 50 (4), pp. 987–1006. Engle, R.F. and Bollerslev, T. 1986. ‘Modelling the Persistence of Conditional Variances’, Econometric Reviews, Vol. 5 (1), pp. 1-50. Goffe, W. L., Ferrier, G. D. and Rogers J. 1994. ‘Global Optimization of Statistical Functions with Simulated Annealing’, Journal of Econometrics, Vol. 60 (1-2), pp. 65-69. Hansen, P. R. 2005. ‘A Test for Superior Predictive Ability’, Journal of Business and Economic Statistics, Vol 23, pp. 365-380. Hansen, P. R. and Lunde, A. 2005. ‘A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?’, Journal of Applied Econometrics, Vol. 20 (7), pp. 873–889. Hausmann R., Panizza U. and Rigobon R. 2006. ‘The Long-run Volatility Puzzle of the Real Exchange Rate’, Journal of International Money and Finance, Vol. 25 (1), pp. 93-124. Hsieh, D. 1989. ‘Modeling Heteroskedasticity in Daily Foreign-Exchange Rates’, Journal of Business and Economic Statistics, Vol. 7 (3), pp. 307-317. Kisinbay, T. 2010. ‘Predictive ability of asymmetric volatility models at medium-term horizons’, Applied Economics, Vol. 42 (30), pp. 3813-3829. Levy-Yeyati, E. and Sturzenegger, F. 2005. ‘Classifying Exchange Rate Regimes: Deeds Vs. Words’, European Economic Review, Vol. 49 (6), pp. 1603-1635. Martens M., Chang Y.-C. and S. J. Taylor, S. J. 2002. ‘A Comparison of Seasonal Adjustment Methods When Forecasting Intraday Volatility’, Journal of Financial Research, Vol. 25 (2), pages 283-299. McCurdy, T., and Morgan, I. 1988. ‘Testing the Martingale Hypothesis in Deutsche Mark Futures with Models Specifying the Form of Heteroskedasticity’, Journal of Applied Econometrics, Vol. 3 (3), pp. 187-202. Mincer J. and Zarnowitz V. 1969. ‘The Evaluation of Economic Forecasts’, in Mincer J (Eds), ‘Economic Forecasts and Expectations’, NBER, New York. Nelson, D. B. 1991. ‘Conditional Heteroskedasticity in Asset Returns: A New Approach’, Econmetrica, Vol. 59 (2), pp. 347-370. Patton, A.J. 2011. ‘Volatility Forecast Comparison Using Imperfect Volatility Proxies’, Journal of Econometrics, Vol. 160 (1), pp.246-256. Pong, S., Shackleton, M. B., Taylor, S. J. and Xu, X. 2004. ‘Forecasting Currency Volatility: A Comparison of Implied Volatilities and AR(FI)MA Models’, Journal of Banking and Finance, Vol. 28 (10), pp. 2541-2563. Poon, S.H. and Granger C. W. J. 2003. ‘Forecasting Volatility in Financial Markets: A Review’, Journal of Economic Literature, Vol. 41 (2), pp. 478-539. Tse, Y. K. 1998, ‘The Conditional Heteroscedasticity of the Yen-Dollar Exchange Rate’, Journal of Applied Econometrics, Vol. 13 (1), pp. 49-55. Vilasuso, J. 2002. ‘Forecasting Exchange Rate Volatility’, Economics Letters, Vol. 76, pp. 59-64. WIPS, 2010. ‘World Investment Prospects Survey’, UNCTAD. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/40875 |