Halkos, George and Tsilika, Kyriaki (2012): Programming identification criteria in simultaneous equation models.
Preview |
PDF
MPRA_paper_43467.pdf Download (216kB) | Preview |
Abstract
Examining the identification problem in the context of a linear econometric model can be a tedious task. The order condition of identifiability is an easy condition to compute, though difficult to remember. The application of the rank condition, due to its complicated definition and its computational demands, is time consuming and contains a high risk for errors. Furthermore, possible miscalculations could lead to wrong identification results, which cannot be revealed by other indications. Thus, a safe way to test identification criteria is to make use of computer software. Specialized econometric software can off-load some of the requested computations but the procedure of formation and verification of the identification criteria are still up to the user. In our identification study we use the program editor of a free computer algebra system, Xcas. We present a routine that tests various identification conditions and classifies the equations under study as «under-identified», «just-identified», «over-identified» and «unidentified», in just one entry.
Item Type: | MPRA Paper |
---|---|
Original Title: | Programming identification criteria in simultaneous equation models |
Language: | English |
Keywords: | Simultaneous equation models; order condition of identifiability; rank condition of identifiability; computer algebra system Xcas |
Subjects: | C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C51 - Model Construction and Estimation C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C10 - General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C63 - Computational Techniques ; Simulation Modeling C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C30 - General |
Item ID: | 43467 |
Depositing User: | G.E. Halkos |
Date Deposited: | 29 Dec 2012 01:15 |
Last Modified: | 26 Sep 2019 08:41 |
References: | Anderson, T.W., Hurwitz, L. (1949). Errors and shocks in Economic relationships. Econometrica, 17: 23-25. Angrist, J. D., Graddy, K., and G. W. Imbens (2000). The Interpretation of Instrumental Variables Estimators in Simultaneous Equations Models with an Application to the Demand for Fish. Review of Economic Studies, 67(3): 499-527. Asteriou, D., Hall, S.G. (2011). Applied Econometrics. 2nd edition. Palgrave MacMillan. Athey, S., Haile, P.A. (2002). Identification of Standard Auction Models. Econometrica, 70(6): 2107-2140. Benkard, C.L., Berry, S. (2006). On the Nonparametric Identification of Nonlinear Simultaneous Equations Models: Comment on B. Brown (1983) and Roehrig (1988) Econometrica, 74(5): 1429–1440. Boswijk, H.P. , Doornik, J.A. (2004). Identifying, estimating and testing restricted cointegrated systems: An overview Statistica Neerlandica, 58(4): 440–465. Bowden, R. (1973). The theory of parametric identification. Econometrica, 41: 1069-1074. Brown, B. W. (1983). The Identification Problem in Systems Nonlinear in the Variables. Econometrica, 51(1), 175-196. Brown, D.J., Wegkamp, M.H. (2002). Weighted Mean-Square Minimum Distance from Independence Estimation. Econometrica, 70(5): 2035-2051. Chesher, A. (2003). Identification in Nonseparable Models. Econometrica, 71(5): 1405-1441. Deistler, M. (1976). The identifiability of linera econometric models with autocorrelated errors. International Economic Review, 17: 26-45. Deistler, M. (1978). The structural identifiability of linear models with autocorrelated errors in the case of affine cross-equation restrictions. Journal of Econometrics, 8: 23-31. Deistlet, M., Schrader, J. (1979). Linear models with autocorrelated errors: Structural identifiability in the absence of minimality assumption. Econometrica, 47: 495-504. Drèze, J.H. (1974). Bayesian theory of identification in simultaneous equation models. In: S.E. Fienberg and A. Zellner, eds., Studies in Nayesian Econometrics and Statistics, North-Holland, Amsterdam. Duncan, O.D., Featherman, D.L. (1972). Psychological and cultural factors in the process of occupational achievement. Social Science Research, 1: 121-145. Fisher, F.M. (1959). Generalization of the rank and order conditions for identifiability. Econometrica 27: 431-447. Fisher, F.M. (1961). Identifiability criteria in nonlinear systems. Econometrica, 29: 574-590. Fisher, F.M. (1963). Uncorrelated disturbances and identifiability criteria. International Economic Review, 4: 134-152. Fisher, F.M. (1965). Identifiability criteria in nonlinear systems: A further note. Econometrica, 33: 197-205. Fisher, F.M. (1966). The Identification Problem in Econometrics. New York: McGraw-Hill. Geraci, V.J. (1976). Identification of simultaneous equation models with measurement error. Journal of Econometrics, 4: 263-284. Goldberger, A.S. (1972). Structural equation methods in the Social Sciences. Econometrica, 40: 979-1002. Goldberger, A.S. (1974). Unobservable variables in Econometrics. In: P. Zarembka, ed., Frontiers of Econometrics, Academic, New York, pp. 193-213. Greenslade, J.V., Hall, S.G., Brian Henry, S.G. (2002). On the identification of cointegrated systems in small samples: a modelling strategy with an application to UK wages and prices. Journal of Economic Dynamics and Control, 26(9-10): 1517–1537. Guerre, E., Perrigne, I., Vuong, Q. (2000). Optimal Nonparametric Estimation of First-Price Auctions. Econometrica, 68(3): 525-574. Gujarati, D. N. (2003). Basic Econometrics, 4th ed., McGraw Hill, Boston. Halkos G. E. and Tsilika K. D. (2011), Xcas as a Programming Environment for Stability Conditions of a Class of Linear Differential Equation Models in Economics. AIP Conf. Proc. 1389, 1769-1772, 9th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), Halkidiki, 2011. Halkos G. E. and Tsilika K. D. (2012a), Computing Optimality Conditions in Economic Problems. Journal of Computational Optimization in Economics and Finance, 3(3): 1-13. Halkos G. E. and Tsilika K. D. (2012b). Stability Analysis in Economic Dynamics: A Computational Approach. MPRA paper, 41371, University Library of Munich, Germany. Harvey, A. (1990), The Econometric analysis of Time Series. 2d ed., The MIT Press, Cambridge, Massachusetts. Hatanaka, M. (1975). On the global identification of the dynamic simultaneous equations model with stationary disturbances. International Economic Review, 16: 545-554. Hausman, J. A. and Taylor W. B. (1980) “Identification in Simultaneous Equation Systems with Covariance Restrictions”, MIT, mimeo. Hausman, J.A. (1983). Specification and estimation of simultaneous equation models, Chapter 7 of Handbook of Econometrics, North Holland, Amsterdam, 392-448. Hood, W. C. and Koopmans T. C. (eds.) (1953), Studies in Econometric Method, Cowles Commission Monograph 14. New York: John Wiley & Sons. Hsiao, C. (1976). Identification and estimation of simultaneous equation models with measurement error. International Economic Review, 17: 319-339. Hsiao, C. (1977). Identification for a linear dynamic simultaneous error shock model. International Economic Review, 18: 181-194. Johansen, S., (1995). Identifying restrictions of linear equations with applications to simultaneous equations and cointegration. Journal of Econometrics, 69(1): 111–132. Judge, G.G., Griffiths, W.E., Cartel Hill, R., Lutkepohl, H., Lee, T.C. (1985). The theory and practice of Econometrics. 2nd Edition, Wiley Series in Probability and Mathematical Statistics. Kadane, J.B. (1974). The role of identification in Bayesian theory. In: S.E. Fienberg and A. Zellner, eds., Studies in Nayesian Econometrics and Statistics, North-Holland, Amsterdam. Kelly, J.S. (1971). The identification of ratios of parameters in unidentified equations. Econometrica, 39: 1049-1051. Kelly, J.S. (1975). Linear cross-equation constraints and the identification problem. Econometrica, 43: 125-140. Koopmans T. C. (1949), Identification Problems in Economic Model Construction, Econometrica, 17(2): 125-144. Koopmans, T. C. and Reiersol O., (1950). The Identification of Structural Characteristics. Annals of Mathematical Statistics, 21(2): 165-181. Koopmans, T. C., Rubin H. and Leipnik R. B., (1950) “Measuring the Equation Systems of Dynamic Economics”, In: Koopmans, T. C. (ed.), Statistical Inference in Dynamic Economic Models, Cowles Commission Monograph 10. New York: John Wiley & Sons. Newey, W. K., Powell, J. L., and F. Vella (1999). Nonparametric Estimation of Triangular Simultaneous Equations Models. Econometrica, 67(3): 565-603. Newey, W. K., and J. L. Powell (2003). Instrumental Variable Estimation of Nonparametric Models. Econometrica, 71(5): 1565-1578. Matzkin, R. (2003). Nonparametric Estimation of Nonadditive Random Functions. Econometrica, 71(5): 1332-1375. Matzkin R.L., (2008). Identification in Nonparametric Simultaneous Equations Models. Econometrica, 76(5): 945–978. McFadden, D. (1999) Generalized method of moments. Lecture notes for Economics 240B, Berkeley. Available at http://emlab.berkeley.edu/users/mcfadden/e240b_f01/ ch6.pdf Parisse B., An introduction to the Xcas interface. Available at http://www-fourier.ujf-grenoble.fr/~parisse/giac/tutoriel_en.pdf Richmond, J. (1974). Aggregation and identification. International economic Review, 17: 47-56. Roehrig, C. S. (1988). Conditions for Identification in Nonparametric and Parametric Models. Econometrica, 56(2): 433-447. Rothenberg, T.J. (1973). Identification in parametric models. Econometrica, 39: 577-592. Wald, A. (1950). Note on the identification of economic relations. In: Statistical Inference in Dynamic Economic Models, Cowles Commission Monograph 10, Wiley, New York. Wegge, L. (1965). Identifiability Criteria for a System of Equations as a Whole, Australian Journal of Statistics, 7: 67-77. Wiley, D.E. (1973). The identification problem for structural equation models with unmeasured variables. In: A.S. Goldberger and O.D. Duncan, eds., Structural equation models in the Social Sciences, Seminar Press, New York, pp. 69-84. Zellner, A. (1971). An introduction to Bayesian inference in Econometrics. Wiley, New York. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/43467 |