Finger, Robert and Hediger, Werner (2007): The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn.
Preview |
PDF
MPRA_paper_4740.pdf Download (395kB) | Preview |
Abstract
The adequate representation of crop response functions is crucial for agricultural modeling and analysis. So far, the evaluation of such functions focused on the comparison of different functional forms. In this article, the perspective is expanded by also considering an alternative regression method. This is motivated by the fact that extreme climatic events can result in crop yield observations that cause misleading results if Least Squares regression is applied. We show that such outliers are adequately treated if and only if robust regression or robust diagnostics are applied. The example of simulated Swiss corn yields shows that the application of robust instead of Least Squares regression causes reasonable shifts in coefficient estimates and their level of significance, and results in higher levels of goodness of fit. Furthermore, the costs of misspecification decrease remarkably if optimal input recommendations are based on results of robust regression. We therefore recommend the application of the latter instead of Least Squares regression for agricultural and environmental production function estimation.
Item Type: | MPRA Paper |
---|---|
Institution: | ETH Zürich, Institute for Environmental Decisions |
Original Title: | The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn |
Language: | English |
Keywords: | production function estimation; production function comparison; robust regression; crop response |
Subjects: | Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q12 - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C67 - Input-Output Models C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General |
Item ID: | 4740 |
Depositing User: | Robert Finger |
Date Deposited: | 01 Nov 2007 |
Last Modified: | 30 Sep 2019 08:21 |
References: | Ackello-Ogutu, C., Paris, Q. & Williams, W. A. (1985). Testing a von Liebig Crop Response Function against Polynomial Specifications. American Journal of Agricultural Economics, 67, 873–880 Alivelu, K., Srivastava, S., Rao, A. S., Singh, K. N., Selvakumari, G. & Raju, N.S. (2003). Comparison of Modified Mitscherlich and Response Plateau Models for Calibrating Soil Test Based Nitrogen Recommendations for Rice on Typic Ustropept. Communications in Soil and Science and Plant Analysis, 34, 2633–2643 Anderson, R. L. & Nelson, L. A. (1975). A Family of Models Involving Intersecting Straight Lines and Concomitant Experimental Designs Useful in Evaluating Response to Fertilizer Nutrients. Biometrics, 31, 303–318 Bélanger, G., Walsh, J. R., Richards, J. E., Milburn, P. H. & Ziadi, N. (2000). Comparison of Three Statistical Models Describing Potato Yield Response to Nitrogen Fertilizer. Agronomy Journal, 92, 902–908 Berck, P. & Helfand, G. (1990). Reconciling the von Liebig and Differentiable Crop Production Functions. American Journal of Agricultural Economics, 72, 985–996 Canton Zurich (1992). Gebührenverodnung zum Wasserwirtschaftsgesetz. 724.21. Retrieved February 5, 2007 from www.zhlex.zh.ch/Erlass.html?Open&Ordnr=724.21 Casler, S. D. (1997). Applied production theory: explicit, flexible, and general functional forms. Applied Economics, 29, 1483–1492 Dubois, D., Zihlmann, U. & Fried, P.M. (1999). Burgrain: Erträge und Wirtschaftlichkeit dreier Anbausysteme. Agrarforschung, 6, 169–172 Dubois, D., Scherrer, C., Gunst, L., Jossi, W. & Stauffer, W. (1998). Auswirkungen verschiedener Landbauformen auf den Bodenvorrat an Unkrautsamen in den Langzeitversuchen Chaiblen und DOK. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, Sonderheft XVI, 67–74 FAT (2002). Ergebnisse der Zentralen Auswertung von Buchhaltungsdaten. Report from Agroscope FAT Taenikon. Taenikon, Switzerland Frank, M. D., Beattie, B. R. & Embleton, M. E. (1990). A Comparison of Alternative Crop Response Models. American Journal of Agricultural Economics, 72, 597–603 Frei, C. (2004). Die Klimazukunft der Schweiz - Eine probabilistische Projektion. Working paper at the Organe consultatif sur les changements climatiques, OcCC (Swiss Advisory Body on Climate Change), Berne. Retrieved February 5, 2007 from http://www.occc.ch/ Products/CH2050/CH2050-Scenarien.pdf Frei, C., Schöll, R., Schmidli, J., Fukutome, S. & Vidale, P.L. (2006). Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models. Journal of Geophysical Research, 111, D06105, doi:10.1029/2005JD005965 Fuchs, C. & Schanzenbächer B. (1992). Produktion, Ökologie und Wirtschaftlichkeit ausgewählter Körnerfrüchte. German Journal of Agricultural Economics (Agrarwirtschaft), 41, 152–163 Fuchs, C. & Löthe, K. (1996). Einfluss der Form von Produktionsfunktionen auf die Ermittlung der optimalen speziellen Intensität und die ökologischen Wirkungen in der Pflanzenproduktion. Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues 32, 493–502 Hampel, F. R. (2001). Robust statistics: A brief introduction and overview. Research Report 94, Seminar für Statistik, ETH Zürich. Retrieved February 5, 2007 from http://stat.ethz.ch/research/research_reports/2001/94 Hampel, F. R. (2002). Robust Inference. (In A. H. El-Shaarawi & W. W. Piegorsch (Eds.), Encyclopedia of En-vironmetrics (pp. 1865–1885). New York: Wiley & Sons.) Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. & Stahel, W. A. (1986). Robust Statistics. (New York: Wiley & Sons.) Heady, E.O. & Dillon, J.L. (1961). Agricultural Production Functions. (Ames: Iowa State University Press.) Hexem, R. W. & Heady, E. O. (1978). Water Production Functions for Irrigated Agriculture. (Ames: Iowa State University Press.) Hogg, R. V. (1979). Statistical Robustness: One View of its use in Applications Today. The American Statistician, 33, 108–115 Huber, P. J. (1973). Robust Regression: Asymptotics, Conjectures and Monte Carlo. The Annals of Statistics, 1, 799–821 Huber, P. J. (1996). Robust Statistical Procedures. (Philadelphia: Society for Industrial and Applied Mathematics.) Hubert, M., Rousseeuw, P.J. & Van Aelst, S. (2004). Robustness. (In B. Sundt & J. Teugels (Eds.), Encyclopedia of Actuarial Science (pp. 1515–1529). New York: Wiley & Sons.) Johnston, J. & DiNardo, J. (1997). Econometric Methods, Fourth Edition. (New York: The McGraw-Hill Companies.) Just, R.E. & Pope, R.D. (1979). Production Function Estimation and Related Risk Considerations. American Journal of Agricultural Economics, 61, 276–284 Keusch, A. (2001). Modellierung ressourcenökonomischer Fragestellungen am Beispiel der Erosion im Gebiet des Baldeggersees. Dissertation, ETH Zürich Khan, M. H. & Akbari, A. H., 1986. Impact of Agricultural Research and Extension on Crop Productivity in Pakistan: A Production Function Approach. World Development, 14, 757–762 Landwirtschaftliche Beratungszentrale Lindau (LBL) (1993). Preiskatalog. Landwirtschaftliche Beratungszentrale Lindau (Swiss Center for Agricultural Extension), Lindau, Switzerland Leathers, H. D. & Quiggin, J. C. (1991). Interactions between Agricultural and Resource Policy: The Importance of Attitudes toward Risk. American Journal of Agricultural Economics, 73, 757–764 Liu, Y., Swinton, S. M. & Miller, N. R. (2006). Is site-specific yield response consistent over time? Does it pay? American Journal of Agricultural Economics, 88, 471–483 Llewelyn, R. V. & Featherstone, A. M. (1997). A Comparison of Crop Production Functions Using Simulated Data for Irrigated Corn in Western Kansas. Agricultural Systems, 54, 521–538 Marquardt, D. W. (1963). An Algorithm for Least-Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics, 11, 431–441 Meinke, H., Baethgen, W.E., Carberry, P.S., Donatelli, M., Hammer, G.L., Selvaraju, R., & Stöckle, C.O. (2001). Increasing profits and reducing risks in crop production using participatory systems simulation approaches. Agricultural Systems, 70, 493–513 Moré, J.J. (1978). The Levenberg-Marquardt algorithm Implementation and Theory. (In G. Watson (Ed.), Lecture Notes in Mathematics 630 (pp. 105–116). Berlin: Springer.) Norwood, C. A. (2000). Water Use and Yield of Limited-Irrigated and Dryland Corn. Soil Science Society of America Journal, 64, 365–370 Paris, Q. (1992). The von Liebig Hypothesis. American Journal of Agricultural Economics, 74, 1019–1028 Ramaswami, B. (1992). Production Risk and Optimal Input Decisions. American Journal of Agricultural Economics, 74, 860–869 Rousseeuw, P. J. & Leroy, A. M. (1987). Robust regression and outlier detection. (New York: Wiley & Sons.) Rousseeuw, P.J. & Van Driessen, K. (2000). An algorithm for positive breakdown methods based on concentration steps. (In W. Gaul, O. Opitz and M. Schader (Eds.), Data Analysis: Scientific Modeling and Practical Application (pp. 335–346). Berlin: Springer Verlag.) SAS Institute (2004). SAS/STAT 9.1 User's Guide. SAS Institute Inc., Cary, NC. Retrieved February 5, 2007 from http://support.sas.com/documentation/onlinedoc/91pdf/index_913.html Schabenberger, O., Tharp, B. E., Kells, J. J. & Penner, D. (1999). Statistical Tests for Hormesis and Effective Dos-ages in Herbicide Dose Response. Agronomy Journal 91, 713–721 Schröter, D., Cramer, W., Leemans, R., Prentice, C. I., Araújo, M. B., Arnell, N. W., Bondeau, A., Bugmann, H., Carter, T. R., Gracia, C. A., de la Vega-Leinert, A. C., Erhard, M., Ewert, F., Glendining, M., House, J. I., Kankaanpää, S., Klein, R. J. T., Lavorel, S., Lindner, M., Metzger, M. J., Meyer, J., Mitchell, T. D., Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M. T., Thonicke, K., Thuiller, W., Tucker, G., Zaehle, S. and Zierl, B. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333–1337 Schweizerischer Bauernverband (1982-2004). Statistische Erhebungen und Schätzungen über Landwirtschaft und Ernährung. Schweizer Bauernverband (Swiss Farmers’ Union), Brugg, Switzerland Stöckle, C. O., Martin, S. A. & Campbell, G. S. (1994). CropSyst, a Cropping Systems Simulation Model: Water/Nitrogen Budgets and Crop Yield. Agricultural Systems, 46, 335–359 Stöckle, C. O., Donatelli, M. & Nelson, R. (2003). Crop-Syst, a cropping systems simulation model. European Journal of Agronomy, 18, 289–307 Street, J. O., Carroll, R. J. & Ruppert, D. (1988). A Note on Computing Robust Regression Estimates Via Iteratively Reweighted Least Squares. The American Statistician, 42, 152–154 Swinton, S. M. & King, R. P. (1991). Evaluating Robust Regression Techniques for Detrending Crop Yield Data with Nonnormal Errors. American Journal of Agricultural Economics, 73, 446–451 Torriani, D. S., Calanca, P., Schmid, S., Beniston, M. & Fuhrer, J. (2007). Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Climate Research 34, 59-69. Tukey, J. W. (1960). A survey of sampling from contaminated distributions. (In I. Olkin (Ed.), Contributions to probability and statistics (pp. 448–485). Palo Alto: Stanford University Press.) Walther, U., Ryser, J.P. & Flisch R. (eds.) (2001). Grundlagen für die Düngung im Acker- und Futterbau (GRUDAF). Agrarforschung, 8, Special Issue Yadav, S. N., Peterson, W. & Easter, K. W. (1997). Do Farmers Overuse Nitrogen Fertilizer to the Detriment of the Environment? Environmental and Resource Economics, 9, 323–340 Zihlmann, U., Weisskopf, P. & Dubois, D. (1999). Burgrain: Bodenstruktur in unterschiedlichen Anbausystemen. Agrarforschung, 6, 165–168 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/4740 |
Available Versions of this Item
- The Application of Robust Regression to a Production Function Comparison – the Example of Swiss Corn. (deposited 01 Nov 2007) [Currently Displayed]