Golmohammadpoor Azar, Kamran (2014): Estimation of Fractal Parameters of Tehran Stock Market Groups Time Series Using Discrete Wavelet Transform. Published in: First National Conference of Applied Statistics, Department of Statistics, Islamic Azad University of Tabriz, Tabriz, Iran. (23 June 2014)
Preview |
PDF
MPRA_paper_58597.pdf Download (506kB) | Preview |
Abstract
Nowadays financial markets such as stock markets, gold and currency because of their significant returns are the investors’ main target. Their aim is to invest in a way that they can earn the highest profit. Among these markets, the stock market is of utmost importance since it deals with buying and selling the shares of diverse companies. Thus using the approaches that yield the highest profit and the lowest risk is the greatest priority of investors. This paper wants to calculate the chaotic indicators in different groups of Tehran’s stock market using Discrete Wavelet Transform. For this purpose, by utilizing the wavelet toolbox of Matlab software, Hurst exponent and Fractal Dimension and Predictability index of Tehran stock market’s groups time series were estimated. Results prove that almost all of the group’s time series are demonstrating Non-Gaussian behavior. And the type of time series’ memories whether they are short-term or long-term were identified. Furthermore, Predictability indices of time series were calculated which is also useful in investor’s decision making.
Item Type: | MPRA Paper |
---|---|
Original Title: | Estimation of Fractal Parameters of Tehran Stock Market Groups Time Series Using Discrete Wavelet Transform |
English Title: | Estimation of Fractal Parameters of Tehran Stock Market Groups Time Series Using Discrete Wavelet Transform |
Language: | Persian |
Keywords: | Tehran Stock Market groups, Hurst exponent, Fractal dimension, Predictability index, Discrete Wavelet Transform. |
Subjects: | C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C46 - Specific Distributions ; Specific Statistics C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics G - Financial Economics > G1 - General Financial Markets > G11 - Portfolio Choice ; Investment Decisions |
Item ID: | 58597 |
Depositing User: | alpha betha |
Date Deposited: | 16 Sep 2014 07:45 |
Last Modified: | 28 Sep 2019 04:48 |
References: | - احمدی، م. و ابراهیم زاده اردستانی، و. و بنی عامریان، ج. (1390). کاربرد تبدیل موجک گسسته دوبعدی در برآورد چشمه های گرانی، مجله ژئوفیزیک ایران، جلد 5، شماره 3، صفحه 66-55. - جعفری، غ. و ایزدی نیا، ن. و پیروتی، ج. (1390)، تحلیل چندفراکتالی نوسانات روندزدایی شده شاخص کل بورس اوراق بهادار تهران، فصلنامه بورس و اوراق بهادار، سال چهارم، ش 14، صفحه 115 – 134. - رحمانی، م. (1390). کاربرد نظریه آشوب و فراکتال در پیش بینی سری های زمانی. تهران: جهاد دانشگاهی واحد صنعتی شریف. - Jafari, G. R. and Norouzzadeh, P. (2005), Application of Multifractal Measurers to Tehran Price Index,Physica A: Statistical Mechanics and its Applications, 356(2), 609-627. - Kirichenko, L. and Radivilova. T. and Deineko, Z. (2011). Comparative Analysis for Estimating of the Hurst Exponent for Stationary and Nonstationary Time Series, International Journal “Information Technologies & Knowledge”, Vol.5, 371-388. - Mandelbrot, B. (1997). Three Fractal Models in Finance : Discontinuity, Concentration, Risk,Economic Notes by Banca Monte die Paschi di Siena SPA, 26(2), 171-212. - Mandelbrot, B. (1999). A Multifractal Walk down Wall Street. Scientific American 280 (2): 70. - Mitra, K. S. (2011). Trends of Stock Prices and Range to Standard Deviation Ratio, 6(1). - Mittal, A. and Bhardwaj, R. (2011). Predictability Index, Fractal Dimension and Hurst Exponent Estimation of Indian Air Pollution Parameters, International Journal of Advanced Scientific and Technical Research, 2(1), 363-375. - Moeini, A. and Ahari, M and Madarshahi, S.S. (2006), Investigating Chaos in Tehran Stock Exchange Index, Iranian Economic Review, online at: ier.ut.ac.ir/pdf_31005_6e51fd93a625455e4f212d02db23c33a.html - Peters, E. (1994). Fractal Market Analysis : Applying Chaos Theory to Investment and Economics, New Jersey: John Wiley and Sons Inc. - Qian, B. and Rasheed, K. (2007). Hurst Exponent and Financial Market Predictability, online at: optimaltrader.se/hurst_exponent_and_financial_market_predictability.pdf |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/58597 |