Korobilis, Dimitris (2015): Quantile forecasts of inflation under model uncertainty.
Preview |
PDF
MPRA_paper_64341.pdf Download (178kB) | Preview |
Abstract
Bayesian model averaging (BMA) methods are regularly used to deal with model uncertainty in regression models. This paper shows how to introduce Bayesian model averaging methods in quantile regressions, and allow for different predictors to affect different quantiles of the dependent variable. I show that quantile regression BMA methods can help reduce uncertainty regarding outcomes of future inflation by providing superior predictive densities compared to mean regression models with and without BMA.
Item Type: | MPRA Paper |
---|---|
Original Title: | Quantile forecasts of inflation under model uncertainty |
Language: | English |
Keywords: | Bayesian model averaging; quantile regression; inflation forecasts; fan charts |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C11 - Bayesian Analysis: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection |
Item ID: | 64341 |
Depositing User: | Dimitris Korobilis |
Date Deposited: | 15 May 2015 04:31 |
Last Modified: | 01 Oct 2019 00:20 |
References: | Bernardi, M., Casarin, R. and Petrella, L. (2014), Dynamic model averaging for quantile regression. manuscript. Crespo-Cuaresma, J., Foster, N. and Stehrer, R. (2011). Determinants of regional economic growth by quantile. Regional Studies 45(6), 809-826. Gaglianone, W. P. and Lima, L. R. (2012). Constructing density forecasts from quantile regressions. Journal of Money, Credit and Banking 44, 1589-1607. Geraci, M. and Bottai, M. (2007). Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 8, 140-154. Gerlach R, Chen C. W. S. and Chan, N. Y. C. (2011). Bayesian time-varying quantile forecasting for value-at-risk in financial markets. Journal of Business and Economic Statistics 29(4), 481-492. Geweke, J. and Amisano, G. (2010). Comparing and evaluating Bayesian predictive distributions of asset returns. International Journal of Forecasting 26(2), 216-230. Koenker, R. (2005).Quantile Regression. New York: Cambridge University Press. Koop, G and Korobilis, D. (2012). Forecasting inflation using dynamic model averaging. International Economic Review 53(3), 867-886. Kozumi, H. and Kobayashi, G. (2011). Gibbs sampling methods for Bayesian quantile regression. Journal of Statistical Computation and Simulation 81(11), 1565-1578. Lancaster, T. and Jun, S. J. (2010). Bayesian quantile regression methods. Journal of Applied Econometrics 25, 287-307. Meligkotsidou, L., Vrontos, I. D. and Vrontos, S. D. (2009). Quantile regression analysis of hedge fund strategies. Journal of Empirical Finance 16, 264-279. Reed, C. and Yu, K. M. (2011). Efficient Gibbs sampling for Bayesian quantile regression. manuscript. Schüler, Y. S. (2014). Asymmetric effects of uncertainty over the business cycle: A quantile structural vector autoregressive approach. Working Paper Series University of Konstanz 2014-02. Tsionas, E. (2003). Bayesian quantile inference. Journal of Statistical Computation and Simulation 73, 659-674. Wright, J. E. (2008). Forecasting US inflation by Bayesian model averaging, Journal of Forecasting 28, 131-144. Yu, K. M. and Moyeed, R. A. (2001). Bayesian quantile regression. Statistics & Probability Letters 54, 437-447. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/64341 |