Nyholm, Juho (2017): Residual-based diagnostic tests for noninvertible ARMA models.
Preview |
PDF
MPRA_paper_81033.pdf Download (569kB) | Preview |
Abstract
This paper proposes two residual-based diagnostic tests for noninvertible ARMA models. The tests are analogous to the portmanteau tests developed by Box and Pierce (1970), Ljung and Box (1978) and McLeod and Li (1983) in the conventional invertible case. We derive the asymptotic chi-squared distribution for the tests and study the size and power properties in a Monte Carlo simulation study. An empirical application employing financial time series data points out the usefulness of noninvertible ARMA model in analyzing stock returns and the use of the proposed test statistics.
Item Type: | MPRA Paper |
---|---|
Original Title: | Residual-based diagnostic tests for noninvertible ARMA models |
Language: | English |
Keywords: | Non-Gaussian time series; noninvertible ARMA model; model selection |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection |
Item ID: | 81033 |
Depositing User: | Juho Nyholm |
Date Deposited: | 28 Aug 2017 11:08 |
Last Modified: | 06 Oct 2019 18:25 |
References: | Alessi, L., M. Barigozzi, and M. Capasso (2011). Non-fundamentalness in structural econometric models: A review. International Statistical Review 79, 16–47. Andrews, B., M. Calder, and R. A. Davis (2009). Maximum likelihood estimation for alpha-stable autoregressive processes. Annals of Statistics 37, 1946–1982. Andrews, B., R. A. Davis, and F. J. Breidt (2006). Maximum likelihood estimation for all-pass time series models. Journal of Multivariate Analysis 97, 1638 – 1659. Blanchard, O. and R. Perotti (2002). An empirical characterization of the dynamic effects of changes in government spending and taxes on output. Quarterly Journal of Economics 117, 1329–1368. Box, G. E. and D. A. Pierce (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. Journal of the American Statistical Association 65, 1509–1526. Breidt, F. J., R. A. Davis, and A. A. Trindade (2001). Least absolute deviation estimation for all-pass time series models. Annals of Statistics 29, 919–946. Campbell, J. Y., A. W.-C. Lo, and A. C. MacKinlay (1997). The Econometrics of Financial Markets, Volume 2. Princeton University Press, Princeton, NJ. Cui, Y., T. J. Fisher, and R. Wu (2014). Diagnostic tests for non-causal time series with infinite variance. Journal of Statistical Planning and Inference 147, 117–131. Fernández-Villaverde, J., J. F. Rubio-Ramírez, T. J. Sargent, and M. W. Watson (2007). ABCs (and Ds) of understanding VARs. American Economic Review 97, 1021–1026. Forni, M. and L. Gambetti (2014). Sufficient information in structural VARs. Journal of Monetary Economics 66, 124–136. Gouriéroux, C. and J.-M. Zakoïan (2013). Explosive bubble modelling by noncausal process. Working Papers 2013-04, Centre de Recherche en Economie et Statistique. 19 Hansen, L. P. and T. J. Sargent (1981). Exact linear rational expectations models: Specification and estimation. Technical report, Federal Reserve Bank of Minneapolis. Hansen, L. P. and T. J. Sargent (1991). Two difficulties in interpreting vector autoregressions. In L. P. Hansen, T. J. Sargent, J. Heaton, A. Marcet, and W. Roberds (Eds.), Rational expectations econometrics. Oxford: Westview Press Boulder, CO. Hong, Y. (1999). Hypothesis testing in time series via the empirical characteristic function: a generalized spectral density approach. Journal of the American Statistical Association 94, 1201–1220. Huang, J. and Y. Pawitan (2000). Quasi-likelihood estimation of non-invertible moving average processes. Scandinavian Journal of Statistics 27, 689–702. Kasa, K., T. B. Walker, and C. H. Whiteman (2014). Heterogeneous beliefs and tests of present value models. Review of Economic Studies 81, 1137–1163. Lanne, M., M. Meitz, and P. Saikkonen (2013). Testing for linear and nonlinear predictability of stock returns. Journal of Financial Econometrics 11, 682–705. Leeper, E. M., T. B. Walker, and S.-C. S. Yang (2013). Fiscal foresight and information flows. Econometrica 81, 1115–1145. Lii, K.-S. and M. Rosenblatt (1996). Maximum likelihood estimation for nongaussian nonminimum phase ARMA sequences. Statistica Sinica 6, 1–22. Lim, K.-P. and R. Brooks (2011). The evolution of stock market efficiency over time: a survey of the empirical literature. Journal of Economic Surveys 25, 69–108. Ljung, G. M. and G. E. Box (1978). On a measure of lack of fit in time series models. Biometrika 65, 297–303. Lof, M. (2013). Noncausality and asset pricing. Studies in Nonlinear Dynamics & Econometrics 17, 211–220. McLeod, A. I. and W. K. Li (1983). Diagnostic checking ARMA time series models using squared-residual autocorrelations. Journal of Time Series Analysis 4, 269–273. 20 Meitz, M. and P. Saikkonen (2013). Maximum likelihood estimation of a noninvertible ARMA model with autoregressive conditional heteroskedasticity. Journal of Multivariate Analysis 114, 227–255. Nyberg, H., M. Lanne, and E. Saarinen (2012). Does noncausality help in forecasting economic time series? Economics Bulletin 32, 2849–2859. Poterba, J. M. and L. H. Summers (1988). Mean reversion in stock prices. Journal of Financial Economics 22, 27 – 59. Rosenblatt, M. (2012). Gaussian and non-Gaussian linear time series and random fields. Springer Science & Business Media. Scott, D. J. (1973). Central limit theorems for martingales and for processes with stationary increments using a Skorokhod representation approach. Advances in Applied Probability 5, 119–137. Singleton, K. J. (2009). Empirical dynamic asset pricing: model specification and econometric assessment. Princeton University Press. Taylor, S. J. (1982). Tests of the random walk hypothesis against a price-trend hypothesis. Journal of Financial and Quantitative Analysis 17, 37–61. Wu, R. and R. A. Davis (2010). Least absolute deviation estimation for general autoregressive moving average time-series models. Journal of Time Series Analysis 31, 98–112. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/81033 |