Urbina, Jilber (2017): Eficiencia técnica en la producción de café en Nicaragua: Un análisis de fronteras estocásticas.
Preview |
PDF
MPRA_paper_82690.pdf Download (290kB) | Preview |
Abstract
This article analyses the technical efficiency of coffee production in Nicaragua. We apply a stochastic frontier model to estimate the technical efficiency which reaches 60%; this means that Nicaraguan coffee producers have chances to improve the way they get things done. This level of efficiency prevents Nicaragua from capturing 340 million dollars for coffee exports. At the end of 2015, revenues from coffee exports represented 3.09 percent of gross domestic product (GDP), if 100 percent productive efficiency had been achieved, the relative importance of this item would have represented 5.77 percent of GDP. A counterfactual analysis shows the gains that would be derived from achieving technical efficiency.
Item Type: | MPRA Paper |
---|---|
Original Title: | Eficiencia técnica en la producción de café en Nicaragua: Un análisis de fronteras estocásticas |
English Title: | Technical efficiency in coffee production: a stochastic frontier analysis for Nicaragua |
Language: | Spanish |
Keywords: | technical efficiency, coffee, stochastic frontier model, Nicaragua |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C12 - Hypothesis Testing: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C24 - Truncated and Censored Models ; Switching Regression Models ; Threshold Regression Models C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs > C87 - Econometric Software D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q0 - General > Q00 - General Q - Agricultural and Natural Resource Economics ; Environmental and Ecological Economics > Q1 - Agriculture > Q18 - Agricultural Policy ; Food Policy |
Item ID: | 82690 |
Depositing User: | Dr. Jilber Urbina |
Date Deposited: | 07 Dec 2017 10:28 |
Last Modified: | 27 Sep 2019 10:38 |
References: | Abdulai, A. y Eberlin, R. (2001). Technical efficiency during economic reform in nicaragua: evidence from farm household survey data. Economic Systems,25(2):113–125. Aigner, D., Lovell, C., y Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6(1):21 –37. Battese, G. E. y Coelli, T. J. (1992). Frontier production functions, technicalefficiency and panel data: With application to paddy farmers in India. Journal of Productivity Analysis, 3(1/2):153–169. BCN (2015). Informe Anual 2015. Banco Central de Nicaragua. Binam, J. N., Sylla, K., Diarra, I., y Nyambi, G. (2003). Factors affecting technical efficiency among coffee farmers in côte d’ivoire: Evidence from the centre west region. African Development Review, 15(1):66–76. Bravo-Ureta, B. E. y Pinheiro, A. E. (1997). Technical, economic, and allocative efficiency in peasant farming: evidence from the dominican republic. The Developing Economies, 35(1):48–67. Bravo-Ureta, B. E., Solis, D., Moreira López, V. H., Maripani, J. F., Thiam, A., y Rivas, T. (2007). Technical efficiency in farming: a meta-regression analysis. Journal of Productivity Analysis, 27(1):57–72. Chandra, S. (1979). Technical efficiency in farming: the relationship with the age of the farm manager. Fiji Agricultural Journal, 41:31–36. Coelli, T. y Fleming, E. (2004). Diversification economies and specialisation efficiencies in a mixed food and coffee smallholder farming system in Papua New Guinea. Agricultural Economics, 31(2-3):229–239. Coelli, T. y Henningsen, A. (2013). frontier: Stochastic Frontier Analysis. R package version 1.1-0. Halvorsen, R. y Palmquist, R. (1980). The interpretation of dummy variables in semilogarithmic equations. The American Economic Review, 70(3):474–475. Kalaitzandonakes, N. G. y Dunn, E. G. (1995). Technical efficiency, managerial ability and farmer education in guatemalan corn production: A latent variable analysis. Agricultural and Resource Economics Review, 24(1). Kennedy, P. (1981). Estimation with correctly interpreted dummy variables in semilogarithmic equations [the interpretation of dummy variables in semiloga-rithmic equations]. American Economic Review, 71(4). MAG (2013). Programa Nacional de Transformación y Desarrollo de la Caficultura. Ministerio Agropecuario. Nicaragua. Marschak, J. y Andrews, W. H. (1944). Random simultaneous equations and the theory of production. Econometrica, 12(3/4):143–205. R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Timmer, C. P. (1971). Using a probabilistic frontier production function to measure technical efficiency. Journal of Political Economy, 79(4):776–794. Wickham, H. (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. Zellner, A., Kmenta, J., y Drèzer, J. (1966). Specification and estimation of Cobb-Douglas production functions. Econometrica, 34:784–795. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/82690 |