Logo
Munich Personal RePEc Archive

Common Factors and Spatial Dependence: An Application to US House Prices

Yang, Cynthia Fan (2017): Common Factors and Spatial Dependence: An Application to US House Prices.

[thumbnail of MPRA_paper_89032.pdf]
Preview
PDF
MPRA_paper_89032.pdf

Download (974kB) | Preview

Abstract

This paper considers panel data models with cross-sectional dependence arising from both spatial autocorrelation and unobserved common factors. It derives conditions for model identification and proposes estimation methods that employ cross-sectional averages as factor proxies, including the 2SLS, Best 2SLS, and GMM estimations. The proposed estimators are robust to unknown heteroskedasticity and serial correlation in the disturbances, unrequired to estimate the number of unknown factors, and computationally tractable. The paper establishes the asymptotic distributions of these estimators and compares their consistency and efficiency properties. Extensive Monte Carlo experiments lend support to the theoretical findings and demonstrate the satisfactory finite sample performance of the proposed estimators. The empirical section of the paper finds strong evidence of spatial dependence of real house price changes across 377 Metropolitan Statistical Areas in the US from 1975Q1 to 2014Q4. The results also reveal that population and income growth have significantly positive direct and spillover effects on house price changes. These findings are robust to different specifications of the spatial weights matrix constructed based on distance, migration flows, and pairwise correlations.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.