Aknouche, Abdelhakim and Dimitrakopoulos, Stefanos and Touche, Nassim (2019): Integer-valued stochastic volatility.
PDF
MPRA_paper_91962.pdf Download (893kB) |
Abstract
We propose a novel class of count time series models, the mixed Poisson integer-valued stochastic volatility models. The proposed specification, which can be considered as an integer-valued analogue of the discrete-time stochastic volatility model, encompasses a wide range of conditional distributions of counts. We study its probabilistic structure and develop an easily adaptable Markov chain Monte Carlo algorithm, based on the Griddy-Gibbs approach that can accommodate any conditional distribution that belongs to that class. We demonstrate that by considering the cases of Poisson and negative binomial distributions. The methodology is applied to simulated and real data.
Item Type: | MPRA Paper |
---|---|
Original Title: | Integer-valued stochastic volatility |
English Title: | Integer-valued stochastic volatility |
Language: | English |
Keywords: | Griddy-Gibbs, Markov chain Monte Carlo, mixed Poisson parameter-driven models, stochastic volatility, Integer-valued GARCH. |
Subjects: | C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C13 - Estimation: General C - Mathematical and Quantitative Methods > C1 - Econometric and Statistical Methods and Methodology: General > C15 - Statistical Simulation Methods: General C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C32 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes ; State Space Models C - Mathematical and Quantitative Methods > C3 - Multiple or Simultaneous Equation Models ; Multiple Variables > C35 - Discrete Regression and Qualitative Choice Models ; Discrete Regressors ; Proportions C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C58 - Financial Econometrics |
Item ID: | 91962 |
Depositing User: | Prof. Abdelhakim Aknouche |
Date Deposited: | 12 Feb 2019 09:34 |
Last Modified: | 26 Sep 2019 19:13 |
References: | Abanto-Valle, C.A., Migon, H.S., Lachos V.H. (2011). Stochastic volatility in mean models with scale mixtures of normal distributions and correlated errors: A Bayesian approach. Journal of Statistical Planning and Inference 141: 1875--1887. Ahmad, A., Francq, C. (2016). Poisson QMLE of count time series models. Journal of Time Series Analysis 37: 291-314. Aknouche, A. (2017). Periodic autoregressive stochastic volatility. Statistical Inference for Stochastic Processes 20: 139--177. Aknouche, A., Bendjeddou, S., Touche, N. (2018). Negative binomial quasi-likelihood inference for general integer-valued time series models. Journal of Time Series Analysis 39: 192-211. Aknouche, A., Demouche, N. (2019). Ergodicity conditions for a double mixed Poisson autoregression. Statistics and Probability Letters 147: 6-11. Aknouche, A., Francq, C. (2018). Count and duration time series with equal conditional stochastic and mean orders. MPRA paper 90838. Berg, A., Meyer, R., Yu, J. (2004). Deviance information criterion for comparing stochastic volatility models. Journal of Business & Economic Statistics 22: 107--120. Box, G.E.P., Tiao, G.C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley: Reading, MA. Bauwens, L., Hautsch, N. (2006). Stochastic conditional intensity processes. Journal of Financial Econometrics 4: 450--493. Benjamin, M. A., Rigby, R. A., Stasinopoulos, D. M. (2003). Generalized autoregressive moving average models. Journal of the American Statistical Association 98: 214--23. Bradlow, E.T., Hardie, B.G.S., Fader, P.S. (2002). Bayesian inference for the negative binomial distribution via polynomial expansions. Journal of Computational & Graphical Statistics 11: 189--201. Cameron, A., Trivedi, P. (2013). Regression Analysis of Count Data. Cambridge University Press. Carrasco, M., Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18: 17-39. Chen, C.W.S., So, M., Li, J.C., Sriboonchitta, S. (2016). Autoregressive conditional negative binomial model applied to over-dispersed time series of counts. Statistical Methodology 31: 73--90. Christou, V., Fokianos, K. (2014). Quasi-likelihood inference for negative binomial time series models. Journal of Time Series Analysis 35: 55--78. Christou, V., Fokianos, K. (2015). Estimation and testing linearity for non-linear mixed poisson autoregressions. Electronic Journal of Statistics 9: 1357-1377. Cox, D.R. (1981). Statistical analysis of time series: Some recent developments. Scandinavian Journal of Statistics 8: 93-115. Davis, R.A., Dunsmuir, W.T.M., Wang, Y. (1999). Modelling time series of count data. In Asymptotics, Nonparametrics, and Time Series. CRC Press, New York, pp. 63--114. Davis, R.A., Dunsmuir, W.T., Wang, Y. (2000). On autocorrelation in a Poisson regression model. Biometrika 87: 491-505. Davis, R.A., Dunsmuir, W.T. (2016). State space models for count time series. In: Handbook of Discrete-Valued Time Series. Chapman and Hall: CRC Press, pp. 121--144. Davis, R.A., Holan, S.H., Lund, R., Ravishanker, N. (2016). Handbook of Discrete-Valued Time Series. Chapman and Hall: CRC Press. Davis, R.A., Liu, H. (2016). Theory and inference for a class of observation-driven models with application to time series of counts. Statistica Sinica 26: 1673-1707. Davis, R.A., Rodriguez-Yam, G. (2005). Estimation for state-space models based on likelihood approximation. Statistica Sinica 15: 381--406. Davis, R.A., Wu, R. (2009). A negative binomial model for time series of counts. Biometrika 96: 735--749. Dean, C., Lawless, J., Willmot, G. (1989). A mixed Poisson-Inverse-Gaussian regression model. The Canadian Journal of Statistics 17: 171--181. Doukhan, P., Fokianos K., Tjøstheim, D. (2012). On weak dependence conditions for Poisson autoregressions. Statistics and Probability Letters 82: 942--948. Dunn, P.K., Smyth, G.K. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics 5: 236--244. Efron, B. (1986). Double exponential families and their use in generalized linear Regression. Journal of the American Statistical Association 81: 709--721. Engle, R. (2002). New frontiers for ARCH models. Journal of Applied Econometrics 17: 425--446. Francq, C., Zakoian, J.M. (2019). GARCH Models: Structure, Statistical Inference and Applications. Wiley. Feller, W. (1943). On a general class of "contagious" distributions. Annals of Mathematical Statistics 14: 389--400. Ferland, R., Latour, A., Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis 27: 923-942. Fokianos, K., Rahbek A., Tjøstheim, D. (2009). Poisson autoregression. Journal of the American Statistical Association 140: 1430--1439. Fokianos, K. (2016). Statistical analysis of count time Series models: A GLM perspective. In: Handbook of Discrete-Valued Time Series. Chapman and Hall: CRC Press. Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57: 1317--1339. Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bayesian Statistics 4, Oxford: Clarendon Press, pp. 641-649. Geyer, C.J. (1992). Practical Markov chain Monte Carlo. Statistical Science 7: 473--483. Graham, R.L., Knuth, D.E., Patashnik, O. (1989). Concrete Mathematics. A Foundation for Computer Science. Reading, MA: Addison Wesley. Grunwald, G., Hyndman, R.J., Tedesco, L., Tweedie, R.L. (2000). Theory and methods: Non-Gaussian conditional linear AR(1) models. Australian & New Zealand Journal of Statistics 42: 479--495. Hay, J., Pettitt, A. (2001). Bayesian analysis of a time series of counts with covariates: an application to the control of an infectious disease. Biostatistics 2: 433--444. Hinde, J.P. (1982). Compound Poisson regression models. In: Proceedings of the International Conference on Generalised Linear Models. Lecture Notes in Statistics, Vol 14. Springer, pp. 109--121. Jacquier, E., Polson, N.G., Rossi, P.E. (1994). Bayesian analysis of stochastic volatility models. Journal of Business & Economic Statistics 12: 371--389. Jacquier, E., Polson, N.G., Rossi, P.E. (2004). Bayesian analysis of fat-tailed stochastic volatility models with correlated errors. Journal of Econometrics 122: 185--212. Jørgensen, B. (1997). The Theory of Dispersion Models. Chapman & Hall, London. Jung, R.C., Kukuk, M., Liesenfeld, R. (2006). Time series of count data: modeling, estimation and diagnostics. Computational Statistics & Data Analysis 51: 2350--2364. Kim, S., Shephard, N., Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Review of Economic Studies 65: 361-393. Kokonendji, C.C., Dossou-Gbété, S., Demétrio, C.G.B. (2004). Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Demétrio classes. Statistics and Operations Research Transactions 28: 203-213. Leroux, B.G. (1992). Maximum likelihood estimation for hidden Markov models. Stochastic Processes and their Applications 40: 127--143. Neumann, M.H. (2011). Absolute regularity and ergodicity of Poisson count processes. Bernoulli 17: 1268--1284. Meyn, S.P., Tweedie, R.L. (2009). Markov Chains and Stochastic Stability. Springer Verlag, New York. Mikosch, T. (2009). Non-life Insurance Mathematics, An Introduction with the Poisson Process. Springer-Verlag, Berlin. Priestley, M.B. (1981). Spectral analysis and time series. New York: Academic Press. Ritter, C., Tanner, M.A. (1992). Facilitating the Gibbs sampler: the Gibbs stopper and the Griddy-Gibbs sampler. Journal of the American Statistical Association 87: 861-868. Rydberg, T.H., Shephard, N. (2000). BIN models for trade-by-trade data. Modelling the number of trades in a fixed interval of time. Technical Report 0740, Econometric Society. Sørensen, H. (2019). Independence, successive and conditional likelihood for time series of counts. Journal of Statistical Planning and Inference 200: 20--31. Spiegelhalter, D., Best, N., Carlin, B., Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 64: 583-639. Taylor, S. (1986). Modelling Financial Time Series. Chichester: Wiley. Tsay, R.S. (2010). Analysis of Financial Time Series. Wiley. Tsiakas, I. (2006). Periodic stochastic volatility and fat tails. Journal of Financial Econometrics 4: 90--135. Wang, J.J., Chana, J.S.K., Choy, S.T.B. (2011). Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures. Computational Statistics & Data Analysis 55: 852--862. Weiss, C.H. (2017). An Introduction to Discrete-Valued Time Series. Wiley. Zeger, S.L. (1988). A regression model for time series of counts. Biometrika 75: 621--629. Zeger, S., Qaqish, B. (1988). Markov regression models for time series: A quasi-likelihood approach. Biometrics 44: 1019--1031. Zhu, F. (2011). A negative binomial integer-valued GARCH model. Journal of Time Series Analysis 32: 54--67. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/91962 |