Ha-Huy, Thai (2019): A tale of two Rawlsian criteria.
PDF
MPRA_paper_95853.pdf Download (460kB) |
Abstract
This work considers optimization problems under Rawls and maximin with multiple discount factors criteria. It proves that though these criteria are different, they have the same optimal value and solution.
Item Type: | MPRA Paper |
---|---|
Original Title: | A tale of two Rawlsian criteria |
Language: | English |
Keywords: | Maximin principle, Ralws criterion, Ramsey criterion |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis D - Microeconomics > D1 - Household Behavior and Family Economics > D11 - Consumer Economics: Theory D - Microeconomics > D9 - Intertemporal Choice > D90 - General |
Item ID: | 95853 |
Depositing User: | Dr Thai Ha-Huy |
Date Deposited: | 11 Sep 2019 05:44 |
Last Modified: | 30 Sep 2019 16:08 |
References: | Alvarez-Cuadrado, F. \& N. Van Long (2009): A mixed Bentham - Rawls criterion for intergenerational equity: Theory and implications. \textit{Journal of Environmental Economics and Management} \textbf{58}, 154-168. Arrow, K. J. (1973): Rawls's Principle of Just Savings. \emph{The Swedish Journal of Economics} \textbf{75}, 323-335. Asheim, G. B. \& I. Ekeland (2016): Resource conservation across generations in a Ramsey - Chichilnisky model. \emph{Economic Theory} \textbf{61}, 611-639. \bibitem{BM2003} Basu, K. \& T. Mitra (2003): Aggregating infinite utility streams with intergenerational equity: The impossibility of being paretian. \textit{Econometrica}, \textbf{71}, 1557--1563. Calvo, G. A. (1977): Optimal Maximin Accumulation With Uncertain Future Technology. \emph{Econometrica} \textbf{45}: 317-327. Chambers, C. \& F. Echenique (2018): On Multiple Discount Rates. \emph{Econometrica} \textbf{86}: 1325-1346. Dana, R. A. \& C. Le Van (1990): On the Bellman equation of the overtaking criterion. \textit{Journal of Optimization Theory and Applications} \textbf{78}, 605–612. Chichilnisky, G. (1996): An axiomatic approach to sustainable development. \textit{Social Choice and Welfare} \textbf{13}, 219–248. Chichilnisky, G. (1997): What is sustainable development? \textit{Land Economics} \textbf{73}, 467–491. Drugeon, J., P., T. Ha-Huy \& T. D. H. Nguyen (2018): On maximin dynamic programming and the rate of discount. \emph{Economic Theory} \textbf{67}, 703-729. Gale, D. (1967): On optimal development in a multi-sector economy, \textit{Review of Economic Studies}, Vol. \textbf{34}, No.97 (1967), 1--18. Gilboa, I. \& D. Schmeidler (1989): Maxmin Expected utility with non-unique prior, \textit{Journal of mathematical economics,} \textbf{18}, 141-153. Ha-Huy, T. \& T. T. M. Nguyen (2019): Saving and dissaving under \emph{Ramsey-Rawls} criterion, \textit{working paper}. Le Van, C. \& L. Morhaim (2002): Optimal growth models with bounded or unbounded returns: a unifying approach. \emph{Journal of Economic Theory} \textbf{105}, 157-187. Le Van, C. \& L. Morhaim (2006): On optimal growth models when the discount factor is near 1 or equal to 1. \textit{International Journal of Economic Theory} \textbf{2}, 55-76. Solow, R., M. (1974): Intergenerational equity and exhaustible resources. \textit{The Review of Economic Studies} \textbf{41}, 29–45. Stokey, N., L. \& R. Lucas Jr with E. Prescott (1989): \newblock Recursive methods in Economic Dynamics. \emph{Harvard University Press}. Rawls, J. (1971): A Theory of Justice. \emph{Oxford, England: Clarendon}. Savage (1954): The foundation of statistics. \emph{Dover publication}. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/95853 |
Available Versions of this Item
-
A tale of two Rawlsian criteria. (deposited 19 Aug 2019 14:59)
- A tale of two Rawlsian criteria. (deposited 11 Sep 2019 05:44) [Currently Displayed]