Logo
Munich Personal RePEc Archive

Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries

Fantazzini, Dean (2020): Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries. Forthcoming in: Applied Econometrics (2020): 1 -20.

[thumbnail of MPRA_paper_102315.pdf]
Preview
PDF
MPRA_paper_102315.pdf

Download (569kB) | Preview

Abstract

The ability of Google Trends data to forecast the number of new daily cases and deaths of COVID-19 is examined using a dataset of 158 countries. The analysis includes the computations of lag correlations between confirmed cases and Google data, Granger causality tests, and an out-of-sample forecasting exercise with 18 competing models with a forecast horizon of 14 days ahead. This evidence shows that Google-augmented models outperform the competing models for most of the countries. This is significant because Google data can complement epidemiological models during difficult times like the ongoing COVID-19 pandemic, when official statistics maybe not fully reliable and/or published with a delay. Moreover, real-time tracking with online-data is one of the instruments that can be used to keep the situation under control when national lockdowns are lifted and economies gradually reopen.

Atom RSS 1.0 RSS 2.0

Contact us: mpra@ub.uni-muenchen.de

This repository has been built using EPrints software.

MPRA is a RePEc service hosted by Logo of the University Library LMU Munich.