Ha-Huy, Thai and Nguyen, Thi Tuyet Mai (2019): Saving and dissaving under Ramsey - Rawls criterion.
Preview |
PDF
MPRA_paper_111548.pdf Download (626kB) | Preview |
Abstract
This article studies an inter-temporal optimization problem using a criterion which is a combination between Ramsey and Rawls criteria. A detailed description of the saving behaviour through time is provided. The optimization problem under $\alpha-$\emph{maximin} criterion is also considered with optimal solution characterized.
Item Type: | MPRA Paper |
---|---|
Original Title: | Saving and dissaving under Ramsey - Rawls criterion |
English Title: | Saving and dissaving under Ramsey - Rawls criterion |
Language: | English |
Keywords: | maximin principle, $\alpha-$ maximin, Ralws criterion, Ramsey criterion, $\epsilon-$contamination |
Subjects: | C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C60 - General C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C61 - Optimization Techniques ; Programming Models ; Dynamic Analysis D - Microeconomics > D1 - Household Behavior and Family Economics > D11 - Consumer Economics: Theory D - Microeconomics > D9 - Intertemporal Choice > D90 - General |
Item ID: | 111548 |
Depositing User: | Dr Thai Ha-Huy |
Date Deposited: | 16 Jan 2022 03:57 |
Last Modified: | 23 Nov 2023 08:23 |
References: | Alon, S. (2015): Worst-case expected utility. \emph{Journal of Mathematical Economics} \textbf{60}: 43-48. Arrow, K. J. (1973): Rawls's Principle of Just Savings. \emph{The Swedish Journal of Economics} \textbf{75}, 323-335. Arrow, K., \& L. Hurwicz (1972): An optimality criterion for decision making under ignorance, \emph{Uncertainty and Expectations in Economics}, ed. by C. Carter and J. Ford, 1-11, \emph{Blackwell}. Asheim, G. B., I. Ekeland (2016): Resource conservation across generations in a Ramsey - Chichilnisky model. \emph{Economic Theory}. Bossert, W., P. K. Pattanaik \& Y. Xu (2000): Choice under complete uncertainty: axiomatic characterizations of some decision rules. \emph{Economic Theory} \textbf{16}: 295-312. Calvo, G. A. (1977): Optimal Maximin Accumulation With Uncertain Future Technology. \emph{Econometrica} \textbf{45}: 317-327. Cao, D. \& I. Werming (2018): Saving and dissaving with hyperbolic discounting. \emph{Econometrica} \textbf{86}: 805-857. Chambers, C. \& F. Echenique (2018): \newblock On Multiple Discount Rates. \emph{Econometrica} \textbf{86}: 1325-1346. Chateauneuf, A., F. Maccheroni, M. Marinacci, \& J. M. Tallon (2005): Monotone continuous multiple priors. \emph{Economic Theory} \textbf{26}: 973-982. Drugeon, J., P., T. Ha-Huy \& T. D. H. Nguyen (2018): On maximin dynamic programming and the rate of discount. \emph{Economic Theory}. Etner, J., M. Jeleva, \& J. M. Tallon (2012): Decision theory under ambiguity. \emph{Journal of Economic Survey} \textbf{26}: 234-270. Fleurbaey, M., B. Tungodden (2010): The tyranny of non-aggregation versus the tyranny of aggregation in social choices: a real dilemma. \emph{Economic Theory} \textbf{44}: 399 - 414. Ghirardato,\ P., F. Maccheroni \& M. Marinacci (2004): Differentiating ambiguity and ambiguity attitude. \emph{Journal of Economic Theory} {\textbf{118}}: 133-173. Gilboa, I. \& D. Schmeidler (1989): Maxmin Expected utility with non-unique prior. \textit{Journal of mathematical economics} \textbf{18}, 141-153. Le Van, C., L. Morhaim (2002): Optimal Growth Models with Bounded or Unbounded Returns: A Unifying Approach. \emph{Journal of Economic Theory} \textbf{105}, 157-187. Koopmans, T. J. (1960): Stationary Ordinal Utility and Impatience, \emph{Econometrica} \textbf{28}: 287-309. Koopmans, T. J. (1972): Representation of Preference Orderings over Time. In: textsl{Decision and Organisation.} McGuire, C. and R.\ Radner, eds.\ Amsterdam: North-Holland. Kopylov, I. (2006): A parametric model of ambiguity hedging. \emph{Working paper}. Krusell, P., \& A. Smith Jr (2003): Consumption-Saving decisions with quasi-geometric discounting. \emph{Econometrica}, \textbf{71}: 53-73. Phelps, P., \& R. Pollack (1968): On Second-best National Saving and Game-Equilibrium Growth. \emph{Review of Economics Studies} \textbf{35}: 185-199. Stokey, N., L. \& R. Lucas Jr with E. Prescott (1989): \newblock Recursive methods in Economic Dynamics. \emph{Harvard University Press}. Phelps, E. S., J. G. Riley (1978): Rawisian Growth: Dynamic Programming of Capital and Wealth for Intergeneration "Maximin" Justice. \emph{Review of Economic Studies} \textbf{45}, 103-120. Rawls, J. (1971): A Theory of Justice. \emph{Oxford, England: Clarendon}. Savage (1954): The foundation of statistics. \emph{Dover publication}. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/111548 |