Mendoza-Velázquez, Alfonso and Galvanovskis, Evalds (2009): Introducing the GED-Copula with an application to Financial Contagion in Latin America.
Preview |
PDF
MPRA_paper_46669.pdf Download (436kB) | Preview |
Abstract
While the Generalized Error Distribution (GED) has been used quite extensively in time series applications and has demonstrated a sound flexibility in the estimation process, there is so far no attempt to use this function in the construction of Copulas. Copulas are probability functions that link one multivariate distribution function to univariate distribution functions called marginals. These marginal functions are assumed to be continuous and to follow a uniform behaviour within [0,1]. In this paper we propose a new Copula function that, to our knowledge, has not been used in the literature of Copulas, until now: the bivariate GED-Copula. This function embeds other well-known distributions including the gaussian distribution. In order to assess the relative performance of this new Copula we investigate financial contagion in foreign exchange, stocks, bonds and sovereign debt markets in Latin America. Standard decision criteria provides strong evidence in favour of the GED-Copula against other Elliptical and Arquimidean alternatives.
Item Type: | MPRA Paper |
---|---|
Original Title: | Introducing the GED-Copula with an application to Financial Contagion in Latin America |
Language: | English |
Keywords: | GED-Distribution, Copula Function, Multivariate Distribution, Contagion, Financial Markets. |
Subjects: | C - Mathematical and Quantitative Methods > C2 - Single Equation Models ; Single Variables > C22 - Time-Series Models ; Dynamic Quantile Regressions ; Dynamic Treatment Effect Models ; Diffusion Processes C - Mathematical and Quantitative Methods > C4 - Econometric and Statistical Methods: Special Topics > C46 - Specific Distributions ; Specific Statistics C - Mathematical and Quantitative Methods > C5 - Econometric Modeling > C52 - Model Evaluation, Validation, and Selection C - Mathematical and Quantitative Methods > C6 - Mathematical Methods ; Programming Models ; Mathematical and Simulation Modeling > C65 - Miscellaneous Mathematical Tools |
Item ID: | 46669 |
Depositing User: | Dr. Alfonso Mendoza-Velazquez |
Date Deposited: | 07 May 2013 12:19 |
Last Modified: | 28 Sep 2019 00:17 |
References: | Baillie, R.T. and T. Bollerslev (1989). The message in daily exchange rates: a conditional variance tale, Journal of Business and Economic Statistics 7, pp. 297–305. Benjamin Verschuere (2006) ‘On Copulas and their Application to CDO Pricing’.http://www.defaultrisk.com/pp_crdrv132.htm. Blume, Simon (1994) ‘Mathematics for Economists’. W.W. Norton & Co. Bollerslev, Tim (1986) ‘Generalized Autoregressive Conditional Heteroskedasticity’. Journal of Econometrics, vol. 31, pp. 307-327. Bollerslev, 1987 T. Bollerslev, A conditionally heteroskedastic time series model for speculative prices and rates of return, Review of Economics and Statistics 69 (1987), pp. 542–547. Bouaddi, Mohammed & Rombouts, Jeroen V.K. (2007) ‘Mixed exponential power asymmetric conditional heteroskedasticity’. Cahiers de recherche, num. 0749. Bouyé, Eric et al. (2000) ‘Copulas for Finance A Reading Guide and Some Applications’. http://ssrn.com/abstract=1032533. Bradley, Brendan O. & Taqqu, Murad S. (2002) ‘Financial Risk and Heavy Tails’. En S. T.Rachev, Handbook of Heavy Tailed Distributions in Finance, Elsevier/North Holland, pp. 35-103. Chen, Qiwen (2006) ‘CDO Pricing and Copula Method’. Working Paper, University of Maryland. Chen, X. and Fan, Y. (2006). Estimation and model selection of semiparametric copula based multivariate dynamic models under copula misspecification. Journal of Econometrics 135, 125-154. Chiodi, Marcello (2000) ‘Le curve normali di ordine p come distribuzioni di errori accidentali: una rassegna dei risultati e problemi aperti per il caso univariato e per quello multivariato1’. Atti Della XL Riunione Scientifica Della SIS (Sociedad Estadística Italiana), pp. 59-60, versión extendida en http://dssm.unipa.it/chiodi/. Clemen, Robert T. & Reilly (1999), Terence ‘Correlations and Copulas for Decision and Risk Analysis’. Management Science, vol. 45, num. 2, pp. 208-224. Demarta, Stefano & McNeil, Alexander J. (2005) ‘The t Copula and Related Copulas’. International Statistical Review, vol. 73, num. 1, pp. 111-129. Embrechts, Paul (2009) ‘Linear Correlation and EVT: Properties and Caveats’. Journal of Financial Econometrics, vol. 7, num. 1, pp. 30-39. Embrechts, Paul, Lindskog, Filip & McNeil, Alexander (2003) ‘Modelling Dependence with Copulas and Applications to Risk Management’. En S. T.Rachev, Handbook of Heavy Tailed Distributions in Finance, Elsevier/North Holland, capítulo 8. Engle, Robert F. (1982) ‘Autoregressive Conditional Heteroscedasticity with Estimates of Variance of United Kingdom Inflation’. Econometrica, vol. 50, pp. 987-1008. Fantazzini, Dean (2004) ‘Copula’s Conditional Dependence Measures for Portfolio Management and Value at Risk’. En L. Bauwers and W. Pohlmeier, Summer School in Economics and Econometrics of Market Microstructure, Universidad de Konstanz. Frees, Edward W. & Valdez, Emiliano A. (1997) ‘Understanding Relationships Using Copulas’. North American Actuarial Journal, vol. 2, pp. 1-25. Genest, Christian & Rivest, Louis Paul ‘Statistical Inference procedures for bivariate Archimedean copulas’. Journal of the American Statistical Association, vol. 8, pp. 1034-1043. Greenwood, P.E. & Nikulin, M.S. (1996) ‘A guide to chi-squared testing’. Wiley. Hamilton, James D. (1994) ‘Time Series Analysis’. Princeton U Press. Harvey, A. & Chakravarty, T. (2008) ‘Beta-t-(E)GARCH’. Cambridge Working Papers in Economics 0840, Faculty of Economics, University of Cambridge. Hoeffding, Wassily (1940) ‘Masstabinvariante Korrelationstheorie’. Teubner, Leipzig. Hogg, Robert & Klugman, Stuart A. (1984) ‘Loss Distributions’. Wiley, Series de Probabilidad y Estadística. Hsieh, 1989 D.A. Hsieh, Modeling heteroscedasticity in daily foreign-exchange rates, Journal of Business and Economic Statistics 7 (1989), pp. 307–317 Hurd, Matthew, Salmon, Mark & Schleicher, Christoph (2005) ‘Using copulas to construct bivariate foreign exchange distributions with an application to the sterling exchange rate index’. CEPR Discussion Paper, num. 5114. Hyung, Namwon & de Vries, Casper G. (2007) ‘Portfolio selection with heavy tails’. Journal of Empirical Finance, pp. 383-400. Joe, Harry & Hu, Taizhong (1996) ‘Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions’. Journal of Multivariate Analysis, vol. 57, num. 2, pp. 240-265. Komunjer, I. (2007). ‘Asymmetric Power Distribution: Theory and Applications to Risk Measurement,’ Journal of Applied Econometrics, 22, 891-921. Liesenfeld, R., and R. Jung (2000). ‘Stochastic Volatility Models: Conditional Normality versus Heavy Tail Distributions’, Journal of Applied Econometrics, 15, 137-160. Lindsey, James K (2001) ‘Nonlinear Models in Medical Statistics’. Oxford University Press, Series de Ciencia Estadística. Longin, F. & Solnik, B. (2001) ‘Extreme Correlation of International Equity Markets’. Journal of Finance, vol. 56, pp. 649-676. Lucchetti, Riccardo (2002) ‘Analytical Score for Multivariate GARCH Models’. Computational Economics, Springer vol. 19, num. 2, pp. 133-143. Malevergne, Y. & Sornette, D. (2001) ‘Testing the Gaussian Copula Hypothesis for Financial Assets Dependences’. EconWPA, Series de Finanzas, num. 0111003. Melchiori, Mario R. (2003) ‘Which Archimedean Copula is the right one?’. YieldCurve. Mendes, B.V.M., Ricardo Leal and André Carvahal-da-Silva (2007). ‘Clustering in Emergin Equity Markets’, Emerging Markets Review, Vol 8, No 3, 194-205. Mikosch, Thomas (2006). “Copulas: Tales and Facts”, Extremes, Vol. 9, No. 1, pp. 3-20 Mineo, Angelo M. & Ruggieri, Mariantonietta (2005) ‘A Software Tool for the Exponential Power Distribution: The normalp Packaged’. Journal of Statistical Software, vol. 12, num. 4. Nelsen, R. B. (1999) ‘An Introduction to Copulas’. Springer-Verlag. Nelson, D. (1991). ‘Conditional Heteroskedasticity in Asset Returns: A new Approach’, Econometrica, 59, 349-370. Ozun, A. and Gokhan Ozbakis (2007). ‘A non parametric copula analysis on estimating return distribution for portfolio management’, Investment Management and Financial Innovations, Volume 4, Issue 3, p.57. Patton, Andrew J. (2006). ‘Modelling Asymmetric Exchange Rate Dependence’. International Economic Review, vol. 47, num. 2, pp. 527-556. Patton, Andrew J. (2009). ‘Copula-Based Models for Financial Time Series’ in T.G. Anderson, et. al. Handbook of Financial Time Series, Springer-Verlag, Berlin. Press, William H., Teukolsky, Saul A., Vetterling, William T. & Flannery, Brian P. (1992) ‘Numerical Recipes in C: The Art of Scientific Computing’. Cambridge University Press, pp. p. 616. Rodriguez, J.C. (2007).Measuring Financial Contagion: a Copula Approach. Journal of Empirical Finance 14, 401-423. Schönbucher, Philipp J. & Schubert, Dirk (2001) ‘Copula-Dependent Default Risk in Intensity Models’. Working Paper en http://www.defaultrisk.com/. Shemyakinyand, Arkady E. & Youn, Heekyung (2006) ‘Copula Models of Joint Survival Analysis’. Applied Stochastic Models in Business and Industry, vol. 22, num. 2, pp. 211-224. Simonato, Jean-Guy (1992) ‘Estimation of GARCH process in the presence of structural change’. Economics Letters, vol. 40, pp. 155-158. Sklar, A. (1959) ’Fonctions de repartition`a n dimensions et leurs marges’. Publications de l’Institut Statistique de l’Universit´e de Paris, vol. 8, pp. 229–31. Tibiletti, Luisa (1995) ‘Beneficial changes in random variables via copulas: An application to insurance’. The GENEVA Papers on Risk and Insurance - Theory, vol. 20, num. 2, pp. 191-202. Trivedi, Pravin K. ‘Copula Modeling: An Introduction for Practitioners’. Foundations and Trends in Econometrics Volume 1 Issue 1. Wu, Mei Lan (2007) ‘Modelling dependent risks for insurer risk Management: experimental Studies with copulas’. Thesis, University of New South Wales. http://www.cbonds.info/. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/46669 |