Harpedanne de Belleville, Louis-Marie (2020): Act Now or Forever Hold Your Peace: Slowing Contagion with Unknown Spreaders, Constrained Cleaning Capacities and Costless Measures.
Preview |
PDF
MPRA_paper_99728.pdf Download (1MB) | Preview |
Abstract
What can be done to slow contagion when unidentified healthy carriers are contagious, total isolation is impossible, cleaning capacities are constrained, contamination parameters and even contamination channels are uncertain? Short answer: reduce variance. I study mathematical properties of contagion when people may be contaminated by using successively devices, such as restrooms, which have been identified as a potential contamination channel for COVID19. The expected number of exposures (at least one previous user was already contaminated and is thus a “spreader”) and new contaminations (which may increase with the number of spreaders among previous users and may also decrease with time) are always convex functions of the number n of users. As a direct application of Jensen inequality, contamination can be reduced at no cost by limiting the variance of n. The gains from optimal use and cleaning of the devices can be substantial in this baseline framework: with a 1% proportion of (unknown) contaminated people, cleaning one device after 5 uses and the other after 15 uses increases contamination by 26 % with respect to the optimal organization, which is cleaning each device after 10 uses. The relative gains decrease when the proportion of spreaders increases. Thus, optimal organization is more beneficial at the beginning of an epidemic, providing additional reason for early action during an epidemic (the traditional reason, which is first-order, is that contamination is approximately exponential over the expansion phase of an epidemic). These convexity results extend only partially to simultaneous use situations, since the exposure function becomes concave above a threshold which decreases with the proportion of spreaders: once again, this calls for early action. Simultaneous use is the framework most often analyzed in the network literature, which may explain why the above convexity results have been overlooked. When multiple spreaders increase the probability of contamination, the degree of convexity depend on the precise effects of each additional spreader. With linear probabilities, the expected contamination curves are semi-parabolas, both for successive and simultaneous use. For other inverse link functions, convexity is always ensured in the successive use case but must be determined case by case for simultaneous use.
Item Type: | MPRA Paper |
---|---|
Original Title: | Act Now or Forever Hold Your Peace: Slowing Contagion with Unknown Spreaders, Constrained Cleaning Capacities and Costless Measures |
Language: | English |
Keywords: | Epidemic, Coronavirus, contagion, spreader, silent spreader, healthy carrier, successive use, directed network, asymptomatic transmission, airborne transmission, fomite, half-contamination function, geometric distribution, binomial distribution, convexity, Jensen inequality |
Subjects: | I - Health, Education, and Welfare > I1 - Health > I12 - Health Behavior I - Health, Education, and Welfare > I1 - Health > I18 - Government Policy ; Regulation ; Public Health L - Industrial Organization > L2 - Firm Objectives, Organization, and Behavior > L23 - Organization of Production M - Business Administration and Business Economics ; Marketing ; Accounting ; Personnel Economics > M5 - Personnel Economics > M50 - General |
Item ID: | 99728 |
Depositing User: | M. Louis-Marie Harpedanne de Belleville |
Date Deposited: | 20 Apr 2020 07:37 |
Last Modified: | 20 Apr 2020 07:37 |
References: | Alvarez, L. (March 28, 2020), “A model to forecast the evolution of the number of COVID-19 symptomatic patients after drastic isolation measures”, mimeo. Bai Y, Yao L, Wei T, F. Tian, D.-Y. Jin, L .Chen and M. Wang (February 21, 2020), “Presumed asymptomatic carrier transmission of COVID-19”, JAMA. (Epub ahead of print) Bernoulli, D. Essai d’une nouvelle analyse de la mortalité causée par la petite vérole. Mem. Math. Phys. Acad. R. Sci. Paris. 1766:1–45 Booth T. F., B. Kournikakis, N. Bastien, J. Ho, D. Kobasa,L. Stadnyk, Y. Li, M. Spence, S. Paton, B. Henry, B. Mederski, D. White, D. E. Low, A. McGeer, A. Simor, M. Vearncombe, J. Downey, F. B. Jamieson, P. Tang and F. Plummer (2005) “Detection of airborne severe acute respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units”, J Infect Dis. Vol. 191, pp.1472–1477. Centers for Disease Control and Prevention (February 29, 2020), “Strategies for Optimizing the Supply of N95 Respirators”, Chang, D. G. Mo, X. Yuan, Y. Tao, X. Peng, F.Wang, L. Xie, L. Sharma, C. S. Dela Cruz, E. Qin (March 27, 2020), “Time Kinetics of Viral Clearance and Resolution of Symptoms in Novel Coronavirus Infection,”, American Journal of Respiratory and Critical Care Medicine. Dietz K. and J. Heesterbeek (2002), Daniel Bernoulli’s epidemiological model revisited. Math. Biosci.; vol.180, pp. 1–21. Doremalen, N. van, T. Buskmaker, D. H. Morris, M. G. Holbrook, A. Gamble, J. L. Harcourt, N. J. Thornburg; S. I. Gerber, J. O. Lloiyd-Smith, E. de Wit and V. J. Munster (March 17, 2020), “Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1”, New England Journal of Medicine, DOI: 10.1056/NEJMc2004973 Fekom, M., N. Vayatis and A. Kalogeratos (September 9, 2019), “Sequential Dynamic Ressource Allocation for Epidemic Control”, arXiv Flaxman, S., S. Mishra, A. Gandy, S. Bhatt, N. M. Ferguson, H. J. T. Unwin, H. Coupland, T. A. Mellan, H. Zhu, T. Berah, J. W. Eaton, P. N. P. Guzman, N. Schmit, L. Callizo, K. E. C. Ainslie, M. Baguelin, I. Blake, A. Boonvasiri, O. Boyd, L. Cattarino, C. Civarella, L. Cooper, Z. Cucunubá, G. Cuomo-Dannenburg, A. Dighe, B. Djaafara, L. Dorigatti, S. van Elsland, R. FitzJohn, H. Fu, K. Gaythorpe, L. Geidelberg, N. Grassly, W. Green, T. Hallett, A. Hamlet, W. Hinsley, B. Jeffrey, D. Jorgensen, E. Knock, D. Laydon, G. Nedjati-Gilani, P. Nouvellet, K. Parag, L. Siveroni, H. Thompson, R. Verity, E. Volz, P. G. T. Walker, C. Walters, H. Wang, Y. Wang, O. Watson, C. Whittaker, P. Winskill, X. Xi, A. Ghani, C. A. Donnely, S. Riley, L. C. Okell, M. A. C. Vollmer (March 30, 2020), “Report 13 - Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID19 in 11 European countries”, MRC Centre for Global Infectious Disease Analysis. Jackson, M. O. and D. Lopez-Pintado (2013), “Diffusion and Contagion in Networks with Heterogeneous Agents and Homophily”, Network Science,vol.1, n° 1, pp. 49-67. Jackson, M. O. and B. W. Rogers (2007), “Relating Network Structure to Diffusion Properties through Stochastic Dominance”, The B.E. Journal of Theoretical Economics, vol. 7, n° 1. Kim S. H., S. Y. Chang, M. Sung, J. H. Park, H. B. Kim, H. Lee, J.-P. Choi, W. S. Choi, and J.-Y. Min (2016), “Extensive viable Middle East respiratory syndrome (MERS) coronavirus contamination in air and surrounding environment in MERS isolation wards”, Clin Infect Dis. Vol. 63, pp.363–369. Kupferschmidt, K. and J.Cohen (Mar. 2, 2020 ), “China’s aggressive measures have slowed the coronavirus. They may not work in other countries”, Science Leung, N. H. L. C. Xu, D. K. M. Ip, and B. J. Cowlin (November 2015), “The fraction of influenza virus infections that are asymptomatic: a systematic review and meta-analysis”, Epidemiology; vol. 26, n°6, pp 862–872. doi:10.1097/EDE.0000000000000340 Li, Q., X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R.Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G.Shi, T. T. Y. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung and Z. Feng (January 31, 2020), “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia”, New England Journal of Medicine, DOI: 10.1056/NEJMoa2001316 Lipsitch, M., T. Cohen, B. Cooper, J. M. Robins, S. Ma2, L. James, G. Gopalakrishna, S. K. Chew, C. C. Tan, M. H. Samore, D. Fisman and M. Murray (2003), “Transmission Dynamics and Control of Severe Acute Respiratory Syndrom”, Science, vol. 300(5627), pp. 1966–1970. doi:10.1126/science.1086616 Normile, D. (March 17, 2020) “Coronavirus cases have dropped sharply in South Korea. What’s the secret to its success?”, Science, doi:10.1126/science.abb7566 Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak AM. (2013 ), “A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case”. Int J Infect Dis., vol. 17, pp. 668–72. Ong, S. W. X.; Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong and K. Marimuthu, (March 4, 2020), “Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient”, JAMA, doi:10.1001/jama.2020.3227 Rothe, C., M. Schunk, P. Sothmann, G. Bretzel, G. Froeschl, C. Wallrauch,. T. Zimmer, V. Thiel, C. Janke, W. Guggemos, M. Seilmaier, C. Drosten, P. Vollmar, K. Zwirglmaier, S. Zange, R. Wölfel, M. Hoelscher, (March 5, 2020), “Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany”, New England Journal of Medicine Santarpia, J. L., D. N. Rivera, V. Herrera, M. J. Morwitzer, H. Creager, G. W. Santarpia, K. K. Crown, D. M. Brett-Major, E. Schnaubelt, M. J. Broadhurst, J. V. Lawler, St. P. Reid and J. J. Lowe (March 26, 2020), “Transmission Potential of SARS-CoV-2 in Viral Shedding Observed at the University of Nebraska Medical Center”, mimeo Tellier, R., Y. Li, B. J. Cowling and J. W. Tang (2019), “Recognition of aerosol transmission of infectious agents: a commentary”BMC Infectious Diseases volume 19, Article number: 101 Wilder-Smith, A., M. D. Teleman, B. H. Heng, A. Earnest, A. E. Ling and Y. S. Leo, (2005), “Asymptomatic SARS Coronavirus Infection among Healthcare Workers, Singapore”, Emerging Infectious Disease, Vol. 11, n° 7. World Health Organization (February 28, 2020), “Rational use of personal protective equipment for coronavirus disease 2019 (COVID-19) - Interim Guidance” World Health Organization (February 28, 2020), “Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19)”. Zou L., F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, J. Yu, M. Kang, Y. Song, J. Xia, Q. Guo, T. Song, J. He, H. L. Yen, M. Peiris and J. Wu (Marc 19, 2020), “SARS-CoV-2 viral load in upper respiratory specimens of infected patients”, New England Journal of Medicine DOI: 10.1056/NEJMc2001737 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/99728 |